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The Goal

Object classification using deep architectures

Convolutional Neural Networks (CNNs)
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Lots of parameters in each layers require lot of training examples

How can we leverage unlabeled data?
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Embedding Algorithm
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Exploit some structure in the data.
See DrLim (Chopra et al, 2005).
Related to: siamese networks, Laplacian Eigenmap, Isomap, LLE...
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Embedding Algorithm: Applications

Language model: Positive pair: (the cat sat on the, mat).

Negative pair: (the cat sat on the, yesterday).

Ranking loss.

Retrieval: Positive pair: matching (query, document).

Negative pair: random (query, document).

Ranking loss.

Semi-supervised: Positive pair: neighbor examples.

Negative pair: random examples.

Euclidean distance.

Video: ?

See Jason Weston’s talk

in the “Learning Feature Hieararchies” workshop
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Video: Temporal Coherence

Two consecutive frames likely to contain the same object(s)
Temporal coherence information helps for learning invariance to
pose, illumination, background, deformations...
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test.mpg
Media File (video/mpeg)


testr.mpg
Media File (video/mpeg)



Leveraging Temporal Coherence
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Representation zl(·) of frames in the lth deep layer

are pushed together for consecutive frames
are pulled appart for two random frames

Corresponds to minimize:

Lcoh(x1, x2) =


||zl(x1) − zl(x2)||1, if x1, x2 consecutive

max(0, m − ||zl(x1) − zl(x2)||1), otherwise
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Algorithm

Given Data...

Input: Labeled data (xn, yn), n = 1, ...N ,
unlabeled video data xn, n = N + 1, ...N + U

Minimize...
1

N

∑
n

L(xn, yn) +
1

N M

∑
n,m

Lcoh(xm, xn)

With Stochastic Gradient...

repeat
Pick a random labeled example (xn, yn)
Make a gradient step to decrease L(xn, yn)
Pick a random pair of consecutive images xm, xn in the video
Make a gradient step to decrease Lcoh(xm, xn)
Pick a random pair of images xm, xn in the video
Make a gradient step to decrease Lcoh(xm, xn)

until Stopping criterion is met
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Previous Work: Semi-supervised Learning

Transduction:

unlabeled must be from same distribution p(x, y)

cluster assumption must be true

kernel (if any) might be based on bad metric

Graph-based learning:

k-nn: slow to construct, might be bad metric

cluster assumption must be true
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Bad Metric: Euclidean Distance

Lighting condition
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Bad Metric: Euclidean Distance

Pose/Background
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Bad Metric: Euclidean Distance

Occlusion
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Bad Metric: Euclidean Distance
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Lcoh(x1, x2) =


||zl(x1) − zl(x2)||1, if x1, x2 consecutive

max(0, m − ||zl(x1) − zl(x2)||1), otherwise

Temporal coherence defines a natural metric
in the representation space zl(·)
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Cluster Assumption

Original Space Representation Space

No cluster assumption requirement in the original space
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Previous Work: Semi-supervised Learning

Transduction:

unlabeled must be from same distribution p(x, y)

cluster assumption must be true

kernel (if any) might be based on bad metric

Graph-based learning:

k-nn: slow to construct, might be bad metric

cluster assumption must be true

Learning from video:

cluster assumption in representation space (not original space!)

natural metric for pairs – Euclidean dist. might say they aren’t close

no cost to collect pairs

weak assumption on unlabeled distribution
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Previous Work: Temporal Coherence

Many methods use video for “learning”. . . two related ones:

Slow Feature Analysis [Wiskott & Sejnowski, 2002] Learn
transformation functions invariant with time, s.t. no trivial solutions.

In [Becker, 1999] temporal context is learnt with a special network:
extra neurons (“contextual gating units”) + a Hebbian update rule for clustering

based on context (“competitive learning”)

IMAX method [Becker and Hinton, 1996]:
maximizes the mutual information between different output units, applied to learning

spatial or temporal coherency. Drawbacks [from authors]: “tendency to become

trapped in poor local minima”, “learning is very slow”

Our method:

Simple, highly scalable, easily trained on millions of examples

We observe improved generalization whenever we applied it. . .
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Experiments: COIL 100 Setup

Following [Wersing, 2003]1.

Built our own video: COIL-like and Animal Set.

Show video learning improves error rate.

Show video helps even when from different source to task.

1Strongly engineered Neural Net (VTU): builds a hierarchy of biologically inspired
feature detectors. It applies Gabor filters at four orientations, followed by spatial
pooling, and learns receptive field profiles using a special type of sparse coding algorithm
with invariance constraints.
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Experiments: Coil 100

100 objects 72x72 pixels,
each of which has 72 different poses (5 degree turns).

4 views for train, 68 for test.
30 or 100 objects for train/test
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Experiments: Coil 100-Like

40 objects, 4 types of objects in COIL100 (fruits, cars, cups, and
cans). Each has 72 views, as a video stream.

Collected to provide similar sensory data as in the COIL dataset.
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Experiments: Animal Set

60 animals such as horses, ducks, deer and rabbits. 72 views for each

animal as a video stream.

Enable us to measure the success when the unlabeled video shares no

objects in common with the supervised task.
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Experiments: COIL 100 Performance

Method 30 objects 100 objects

Nearest Neighbor 81.8 70.1
SVM 84.9 74.6
SpinGlass MRF 82.8 69.4
Eigen Spline 84.6 77.0
VTU 89.9 79.1

Standard CNN 84.88 71.49
videoCNN V:COIL100 - 92.25?

videoCNN V:COIL“70” 95.03† -
videoCNN V:COIL-Like - 79.77
videoCNN V:Animal - 78.67

? Transductive setup with 100 objects
† Semi-supervised setup with 70 objects
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Experiments: AT&T’s ORL Face Dataset

10 different gray scale images for each of the 40 distinct subjects.

Varying lighting and facial expressions (open / closed eyes, smiling /

not smiling).
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Experiments: Simple ORL Experiment

Test Accuracy with magenta k labeled examples per subject.

Method k=1 k=2 k=5

Nearest Neighbor 69.07 81.08 94.64
PCA 56.43 71.19 88.31
LDA - 68.84 88.87
MRF 51.06 68.38 86.95

Standard CNN 71.83 82.58 94.05
videoCNN V:ORL 90.35 94.77 98.86

Images placed in a “video” sequence by concatenating 40 segments, one

for each subject. Labeled train and test images are part of the video.

[WARNING: “transductive” setup]
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Conclusion

Leverage structured data with embedding algorithm.

Use of video coherence improves internal representation of images:

potentially learn invariance to pose, illumination, background or

clutter, deformations (e.g. facial expressions) or occlusions.

Outperforms baselines with no engineered features.

Weaker assumption than in semi-supervised learning.

Huge collections of data can be obtained without human annotation.

General idea: successfully applied to text, document retrieval, semi-

supervised learning..
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