A Scalable Framework for Discovering Coherent Co-clusters in Noisy Data

M. Deodhar, H. Cho, G. Gupta, J. Ghosh, I. Dhillon

Electrical and Computer Engineering University of Texas at Austin, USA

June, 2009

Table of contents

Motivation

- Clustering Problems
- Related Work

2 Robust Overlapping Co-Clustering

- Definition and Cost Function
- Algorithm
- Modification for Robustness
- Generative Model for Soft ROCC

3 Experimental Results

- Synthetic Data
- Yeast Microarray Data
- Lung Cancer Classification

Clustering Problems Related Work

Small Clusters in Large Datasets

- Microarray data
- Market basket data
- Transaction data in fraud detection applications

Figure: Gene-condition co-clusters

Clustering Problems Related Work

Clustering Challenges

- Coherent patterns obfuscated by large amount of noise
- Large number of irrelevant points and features
- Clusters exist in different subspaces of features
- Overlapping clusters

Problem

Want to find co-clusters with the most general structure

Related Work

• Density based clustering

• e.g. DBSCAN, OPTICS, Bregman Bubble Clustering

Related Work

- Restricted to one-sided clustering
- Co-clustering
 - Iterative greedy algorithms Biclustering, Plaid Model
 - Deterministic OPSM
 - Partitional grid based Bregman Co-clustering

Related Work

- Density based clustering
 - e.g. DBSCAN, OPTICS, Bregman Bubble Clustering

Related Work

- Restricted to one-sided clustering
- Co-clustering
 - Iterative greedy algorithms Biclustering, Plaid Model
 - Deterministic OPSM
 - Partitional grid based Bregman Co-clustering
- Subspace clustering
 - e.g. CLIQUE, PROCLUS, pCluster
 - Shifting and scaling patterns Reg-cluster model

Related Work

- Density based clustering
 - e.g. DBSCAN, OPTICS, Bregman Bubble Clustering

Related Work

- Restricted to one-sided clustering
- Co-clustering
 - Iterative greedy algorithms Biclustering, Plaid Model
 - Deterministic OPSM
 - Partitional grid based Bregman Co-clustering
- Subspace clustering
 - e.g. CLIQUE, PROCLUS, pCluster
 - Shifting and scaling patterns Reg-cluster model

Definition and Cost Function Algorithm Modification for Robustness Generative Model for Soft ROCC

Robust Overlapping Co-Clustering

- Discovering dense, overlapping co-clusters in large datasets
- Robust to presence of irrelevant points and features
 - Automatically detected and pruned away
- Robust to data noise model

Definition and Cost Function Algorithm Modification for Robustness Generative Model for Soft ROCC

ROCC: Key Idea

- 2 step approach
 - Prune data points and features
 - Agglomerate co-clusters

Figure: ROCC Concept

Definition and Cost Function Algorithm Modification for Robustness Generative Model for Soft ROCC

Distinguishing Features

- Systematically developed cost function
- Applicability to all Bregman divergences
- Ability to handle missing values
- Simultaneous detection of all co-clusters
- Scalability to large, high-D datasets

Definition and Cost Function Algorithm Modification for Robustness Generative Model for Soft ROCC

Problem Definition

• Step 1

- Matrix $Z_{m \times n}$, s_r , s_c # rows and columns to be clustered
- $\bullet~\mathcal{K}, \mathcal{L}$ sets of clustered rows and columns
- ρ mapping from s_r rows $\in \mathcal{K}$ to k row clusters
- γ mapping from s_c columns $\in \mathcal{L}$ to I column clusters

Objective function

• Find $\mathcal{K}, \mathcal{L}, (\rho, \gamma)$ to minimize

$$\sum_{u \in \mathcal{K}, v \in \mathcal{L}} w_{uv} (z_{uv} - \hat{z}_{uv}(\rho(u), \gamma(v)))^2$$

• Squared error only over the $s_r imes s_c$ clustered elements

Definition and Cost Function Algorithm Modification for Robustness Generative Model for Soft ROCC

Problem Definition

• Step 1

- Matrix $Z_{m \times n}$, s_r , s_c # rows and columns to be clustered
- $\bullet~\mathcal{K}, \mathcal{L}$ sets of clustered rows and columns
- ρ mapping from s_r rows $\in \mathcal{K}$ to k row clusters
- γ mapping from s_c columns $\in \mathcal{L}$ to I column clusters

Objective function

• Find $\mathcal{K}, \mathcal{L}, (\rho, \gamma)$ to minimize

$$\sum_{\in \mathcal{K}, v \in \mathcal{L}} w_{uv} (z_{uv} - \hat{z}_{uv}(\rho(u), \gamma(v)))^2$$

- Squared error only over the $s_r imes s_c$ clustered elements
- Step 2
 - Agglomerate co-clusters using distance measure dist(cc1,cc2) = approximation error of combined co-cluster

Definition and Cost Function Algorithm Modification for Robustness Generative Model for Soft ROCC

Problem Definition

• Step 1

- Matrix $Z_{m \times n}$, s_r , s_c # rows and columns to be clustered
- $\bullet~\mathcal{K}, \mathcal{L}$ sets of clustered rows and columns
- ρ mapping from s_r rows $\in \mathcal{K}$ to k row clusters
- γ mapping from s_c columns $\in \mathcal{L}$ to I column clusters

Objective function

• Find $\mathcal{K}, \mathcal{L}, (\rho, \gamma)$ to minimize

$$\sum_{\in \mathcal{K}, v \in \mathcal{L}} w_{uv} (z_{uv} - \hat{z}_{uv}(\rho(u), \gamma(v)))^2$$

- Squared error only over the $s_r imes s_c$ clustered elements
- Step 2
 - Agglomerate co-clusters using distance measure dist(cc1,cc2) = approximation error of combined co-cluster

Definition and Cost Function Algorithm Modification for Robustness Generative Model for Soft ROCC

Approximation Schemes

- 6 ways of approximating matrix entries \hat{z}_{uv}
- Block co-clusters
 - Matrix entries approximated by co-cluster mean
 - Finds uniform blocks
- Pattern based co-clusters
 - Matrix entries approximated by co-cluster row mean + co-cluster col mean - co-cluster mean
 - Captures trends in data values

Definition and Cost Function Algorithm Modification for Robustness Generative Model for Soft ROCC

ROCC Meta-Algorithm

Step 1

Begin with an initial co-clustering (ρ, γ) Iterate until convergence

(1) Update co-cluster models

(2a) Update row clusters

Assign each row to the closest row cluster Pick s_r rows, closest to assigned row clusters

(2b) Update col clusters

Assign each col to the closest col cluster Pick s_c cols, closest to assigned col clusters

Step 2

Prune less coherent co-clusters Merge similar co-clusters

Definition and Cost Function Algorithm Modification for Robustness Generative Model for Soft ROCC

Addressing the Local Minimum Problem

- $\bullet\,$ Random initialization for ρ,γ could lead to poor local minima
- Our strategy
 - Cluster all the data
 - Iteratively shave off data points and features till s_r rows and s_c columns are left
 - $s_r^{(1)}$ and $s_c^{(1)}$ initialized to m_{c} and n
 - Decayed exponentially till $s_r^{(j)} = s_r$ and $s_c^{(j)} = s_c$

Definition and Cost Function Algorithm Modification for Robustness Generative Model for Soft ROCC

Generative Model Intuition

- Mixture of $k \times l$ exponential family distributions and a background uniform distribution
- Element z_{ij} generated by

$$P(z_{ij}) = \sum_{I=1}^{k} \sum_{J=1}^{I} \alpha_{IJ} f_{\psi}(z_{ij}|\theta_{i,j,I,J}) + \alpha_0 p_0$$

- Each element belongs to *k* × *l* components and background with certain probability
- EM algorithm to fit soft ROCC model

Synthetic Data Yeast Microarray Data Lung Cancer Classification

Results on Synthetic Datasets

Dataset	m,n	# co-clusters	Туре
1	500, 500	3	block
2	500, 200	4	block
3	500, 500	3	pattern
4	500, 200	4	pattern

Table: Synthetic Datasets

Figure: Comparison of ROCC and Biclustering

Synthetic Data Yeast Microarray Data Lung Cancer Classification

Matrix Reconstruction

Figure: Reconstruction by Biclustering and ROCC

Synthetic Data Yeast Microarray Data Lung Cancer Classification

Microarray Datasets

- Lee dataset 5612 yeast genes, 591 experiments
- Gasch dataset 6151 yeast genes, 173 environmental stress conditions
- Ground truth: pairwise linkages between functionally related genes
- Evaluation measure
 - Overlap Lift: how many times more correct links are predicted as compared to random chance
- Aim: find most coherent 150-200 co-clusters

Synthetic Data Yeast Microarray Data Lung Cancer Classification

Results on Microarray Data

genes	Category(Coverage)	p-value
20	tRNA ligase (8/36)	6.63e-14
63	ER membrane (14/84)	3.886e-14
20	PF00270-DEAD (12/51)	<1e-14
12	Glycolysis (8/16)	<1e-14
24	PF00660-SRP1-TIP1 (22/30)	<1e-14

Table: Biologically significant clusters found by ROCC on the Lee dataset.

Synthetic Data Yeast Microarray Data Lung Cancer Classification

Simultaneous Feature Selection and Clustering

- Classification of lung cancer tissue samples
 - 12533 genes and 181 human tissue samples
 - 2 classes: malignant pleural mesothelioma (31 samples) and adenocarcinoma (150 samples)
- Recover 2 sample classes using genes as features
- Presence of redundant, non-informative genes

Figure: Lung Cancer data: sample clustering accuracy

Synthetic Data Yeast Microarray Data Lung Cancer Classification

Concluding Remarks

- ROCC accurately finds dense, overlapping co-clusters in noisy, high-D data
 - by identifying and pruning away irrelevant parts of the data
- Robust to choice of parameters
 - $\bullet\,$ e.g. # rows/cols to be clustered need not be exactly specified
- Interesting applications in market data analysis, text mining