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Outline

• Motivation
• It is important to represent version space, why?
• How to represent the version space ?
• This work is the first attempt to explicitly represent

version space for online learning
• Use ellipsoid as outer approximation of set of

hypotheses that is consistent with hindsight
• Our mistake bound is same with that of percetron up

to a constant factor
• Algorithm
• Introduction to the Ellipsoid Method
• Online Learning by Ellipsoid Methods

• Evaluation
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Bayesian viewpoint : Representing the Version Space

• Why version space ?
• Most online learners only maintain a single classifier

(like point estimation), insufficient
• We want to compute not only the most likely solution

but also the distribution of all possible solutions
• Why important to represent version space explicitly ?
• Online Learning can benefit from having an explicit

repressentation of the version space
• In selective sampling (request label if only in the

region of disagreement), such a reprsentation helps
interchangability between model space and data
region
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Bayesian viewpoint : Representing the Version Space

• How to represent the version space ?
• Use ellipsoid as outer approximation of set of

hypotheses that is consistent with hindsight
• Nice properties of the Ellipsoid Method
• Simple updating formula for E(k + 1)
• E(k + 1) can be larger than E(k) in max semi-axis

length, but always smaller in volume
• vol(E(k + 1)) < e−

1

2n vol(E(k))
(volume reduction factor degrades rapidly with n)

• Information viewpoint : centroid and the positive definite
shape matrix of ellipsoid maintain more information of
training data than most existing online learners
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Related Work in Online Learning

• Most are Additive : given a misclassified (xi, yi),
update w by shifting along the direction of yixi,
w + αiyixi → w
• An quasi-additive framework unifying Perception and

Winnow (Grove et al., 01)
• Extend online learning to multilabel cases (Fink et al.,

06; Crammer & Singer, 03; Crammer et al., 06)
• Extend graph-based approaches for online learning

(Herbster et al., 05)
• Exploited dual formation of optimization for online

learning (Shalev-Shwartz & Singer, 06; Amit et al., 07)
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Outline

• Motivation
• Algorithm
• Introduction to Ellipsoid Method for Convex

Programming
• The Classical Ellipsoid Method for Online Learning

(CELLIP)
• Improved Ellipsoid Method for Online Learning

(IELLIP)
• Ellipsoid Methods for Multiple-Label Online Learning

• Evaluation

Online Learning by Ellipsoid Method – p. 6/22



Ellipsoid Method for Convex Programming (Shor, 1977)

x∗ = arg min{f(x) : x ∈ G} where f(x) is convex
• Starts with E1 ⊇ G.
• Repeat until ε-suboptimal
• Ek = {x|(x− xk)

>P−1

k (x− xk) ≤ 1} containing x∗,
xk ∈ R

d and Pk ∈ Sd×d
++

• Compute gradient hk of f(x) at xk

• Construct half-plane Pk = {x|h>
k (x− xk) ≤ 0}.

x∗ ∈ Pk ∩ Ek proved by convexity of f(x)

• Ek+1 = {x|(x− xk+1)P
−1

k+1
(x− xk+1) ≤ 1} as minimum

volume ellipsoid covering Pk ∩ Ek

xk+1 = xk −
Pkhk

(d + 1)
√

h>
k Pkhk

,

Pk+1 =
d2

d2 − 1

(

Pk −
2Pkhkh

>
k Pk

(d + 1)h>
k Pkhk

)
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Classical Ellipsoid Method for Online Learning (CELLIP)

• A feasibility problem – find a solution that is close to the
γ-margin classifier u given sequentially received training
examples
• At = {z ∈ R

d|yix
>
i z ≥ aγ, i = 1, . . . , t} includes all the

classifiers that are able to classify with margin aγ
training examples received so far
• To efficiently represent At, we construct an ellipsoid

Et = {z ∈ R
d|(z − wt)

>P−1
t (z − wt) ≤ 1}

such that Et ⊇ At

• Now our goal is to efficiently reduce vol(Et), since
Et ⊇ At ⊇ B
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Classical Ellipsoid Method for Online Learning (CELLIP)

Efficiently update the ellipsoid Et given a misclassified
example
• Assume xt ∈ R

d is misclassified by wt : ytw
>
t xi ≤ 0

• Ct = {z ∈ R
d|ytx

>
t z ≥ aγ} : the half plane generated by

xt, (u ∈ Ct ∩ Et since ytu
>xt ≥ γ)

• Rewrite the set Ct as

Ct = {z ∈ R
d|αt − g>t (z − wt) ≤ 0}

αt =
aγ − ytw

>
t xt

√

x>
t Ptxt

, gt =
ytxt

√

x>
t Ptxt

Note that αt ≥ 0 since ytw
>
t xt ≤ 0 and g>t Ptgt = 1.
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Classical Ellipsoid Method for Online Learning (CELLIP)

A family of updating equations for wt and Pt that ensures
Et+1 ⊇ Et ∩ Ct
Theorem 1 Given a misclassified instance (xt, yt), the
following updating equations for wt+1 and Pt+1 will
guarantee that the resulting new ellipsoid Et+1 covers the
intersection Et ∩ Ct:

wt+1 = wt + (αt + ρ)Ptgt

Pt+1 = µ2Pt + ([1− αt − ρ]2 − µ2)Ptgtg
>
t Pt

if parameter ρ > 0 and µ > 0 satisfy the following constraint

1− α2
t

µ2
+

ρ2

(1− αt − ρ)2
≤ 1
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Classical Ellipsoid Method for Online Learning (CELLIP)

1: INPUT:
γ ≥ 0: the desired classification margin
a ∈ [0, 1]: a tradeoff parameter

2: INITIALIZE: w1 = 0 and P1 = (1 + (1− a)γ)Id

3: for t = 1, 2, . . . , T do
4: receive an instance xt

5: predict its class label: ŷt = sign(w>
t xt)

6: receive correct class label yt

7: if yt 6= ŷt then
8: compute wt+1 and Pt+1 (ρ = 0 and µ =

√

1− α2
t )

wt+1 = wt + αtPtgt

Pt+1 = (1− α2
t )Pt − 2αt(1− α)Ptgtg

>
t Pt

9: else
10: wt+1 ← wt and Pt+1 ← Pt

11: end if
12: end for Online Learning by Ellipsoid Method – p. 11/22



Mistake Bound for CELLIP

Theorem 2 Let D = {(xi, yi), i = 1, 2, . . . , T} be the set of
training examples. Assume all the examples are
normalized, i.e., ‖xi‖2 ≤ 1. We assume that there exists an
classifier u ∈ R

d with ‖u‖22 = 1 that is able to classified all
the training examples in D with a margin 0 ≤ γ ≤ 1, i.e.,
yiu

>xi ≥ γ for any (xi, yi) in D. The number of mistake M
made by CELLIP when learning from D (Algorithm) is upper
bounded by

M ≤
2 log(1− a) + 2 log γ − log(1 + (1− a)γ)

log (1− a2γ2/(1 + (1− a)γ)2)
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Address Inseparable Case : an improved ellipsoid method

Can not cast online learning as a feasibility problem since
no classifier can classify all the instances correctly
• Treat wt and Pt as summarization of received training

examples
• wt+1 is a linear combination of the training examples

received in the first t trials

P−1

t+1
=

1

1− α2
t

P−1
t +

2αt

(1− αt)2(1− αt)
gtg

>
t

P−1

t+1
= θ0P

−1

1
+

t
∑

i=1

θigig
>
i ∝ θ0P1 +

t
∑

i=1

ξixix
>
i

where θi and ξi are functions of {αj}
t
j=i.

• P−1
t is a weighted covariance matrix that stores the

second order information of training examples
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Address Inseparable Case : Improved Ellipsoid Method

• Modify the updating equation for Pt as

Pt+1 =
1

1− ct
(Pt − ctPtgtg

>
t Pt)

where ct ∈ [0, 1].
• Set ct = cbt−1 where 0 ≤ c, b ≤ 1 are two constants.

P−1

t+1
= (1− ct)P

−1
t + ctgtg

>
t

• P−1

t+1
is a mixture of matrices P−1

t and gtg
>
t .

• Given ct = cbt−1, Pt+1 is a weighted sum of xixi where
the weight for xixi decays exponentially in t
• Vary c and b→ adjust “memory” of Pt. The smaller b is,

the shorter the memory is
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Improved Ellipsoid Method (IELLIP) for Online Learning

INPUT:
γ ≥ 0: the desired classification margin
0 ≤ c, b ≤ 1: parameters controlling the memory of
online learning

INITIALIZE: w1 = 0 and P1 = Id

for t = 1, 2, . . . , T do
receive an instance xt

predict its class label: ŷt = sign(w>
t xt)

receive correct class label yt

if yt 6= ŷt then
compute wt+1 and Pt+1 using the modified updating
rule

else
wt+1 ← wt and Pt+1 ← Pt

end if
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Mistake Bound for the Improved Ellipsoid Method

• Measure the progress of online learning by

qt = (u− wt)
>P−1

t (u− wt)

where u is some optimal classifier; P−1
t measures the

distance between u and wt

Theorem 3 Let D = {(xi, yi), i = 1, 2, . . . , T} be the set of
training examples. Let u be the optimal classifier with norm
|u|22 = 1. Assume all the examples are normalized, i.e.,
‖xi‖2 ≤ 1. If c and b satisfy c + b < 1, the number of mistakes
made by IELLIP is upper bounded by

M ≤
1

γ2
+

2

γ

1− b

1− b− c

T
∑

i=1

li(u)

where li(u) = max(0, γ − u>xi).
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Extend the Ellipsoid Method to Multi-label Learning

Follow the framework by (Crammer et al.)
• Given x assigned to a subset of classes Y

• Weight vectors for K classes wi ∈ R
d, i = 1, . . . ,K

• Classification margin η(W ;x, Y ) = min
z∈Y

w>
z x−max

z /∈Y
w>

z x

• Loss function l(W ;x, Y ) = max(0, γ − η(W ;x, Y ))
• Construct vector v = (w1, . . . , wK)

• Define class indices ai = max
y/∈Yi

w>
y xi, and bi = min

y∈Yi

w>
y xi

for misclassified (xi, Yi), i.e., η(W ;xi, Yi) ≤ 0

Online Learning by Ellipsoid Method – p. 17/22



Extend the Ellipsoid Method to Multi-label Learning

• Construct a big vector zi ∈ R
K×d

zj
i =











xk
i j = (bi − 1)d + k

−xk
i j = (ai − 1)d + k

0 otherwise

• Construct a half plane Pt for each misclassified
example zt

Pt = {v ∈ R
K×d|αt − (v − vt)

>gt ≤ 0}

where αt and gt are identical the expressions in (1)
except that ytxt is replaced by zt.
• Directly extend to multi-label learning, by definition of

classifier v, misclassified example zi, αt and gt
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Outline

• Motivation
• Algorithm
• Evaluation
• Datasets, Baseline Methods & Evaluation Metrics
• Results of Multiclass Classification
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Experiment Setup

• We evaluate IELLIP, since CELLIP cannot handle
inseparable cases and outperformed by IELLIP
• Initialize P1 as identity matrix at the scale of 0.1;

randomly initialize w around the origin
• Datasets : USPS, UCI Letter, UCI Isolet, UCI Shuttle
• Baselines : Online Passive-Aggressive

Algorithm(PA)(Crammer et al., 06) and Margin Infused
Relaxed Algorithm (MIRA)(Crammer & Singer, 03)
• All use linear classifiers. Margin = 0.1
• Test error: # mistake made on a given sequence

normalized by its length
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Results of Multiclass Classification

• PA better than generalized Perceptron algorithms due
to the aggressiveness (large margins)
• test error of IELLIP better than the best of PA and MIRA.
• a smaller # updates by IELLIP to achieve better test

error than PA and MIRA.
• IELLIP is more efficient than baselines
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Conclusion

• This work is the first attempt to explicitly represent
version space
• Represent the version space by the ellipsoid method,

capturing all classifiers consistent with training
examples
• Same mistake bounds with perceptron up to a const.

factor
• Shape matrix stores more information of training

examples, and provides additional controls
• Geralized to multi-label learning
• Empirical effectiveness of IELLIP, compared with

state-of-the-art online learners
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