# Online Learning by Ellipsoid Method

Liu Yang, Rong Jin and Jieping Ye

Carnegie Mellon University Michigan State University and Arizona State University

# Outline

### • Motivation

- It is important to represent version space, why?
- How to represent the version space ?
- This work is the first attempt to explicitly represent version space for online learning
- Use ellipsoid as outer approximation of set of hypotheses that is consistent with hindsight
- Our mistake bound is same with that of percetron up to a constant factor
- Algorithm
  - Introduction to the Ellipsoid Method
  - Online Learning by Ellipsoid Methods
- Evaluation

**Bayesian viewpoint : Representing the Version Space** 

- Why version space ?
  - Most online learners only maintain a single classifier (like point estimation), insufficient
  - We want to compute not only the most likely solution but also the distribution of all possible solutions
- Why important to represent version space **explicitly**?
  - Online Learning can benefit from having an explicit repressentation of the version space
  - In selective sampling (request label if only in the region of disagreement), such a representation helps interchangability between model space and data region

**Bayesian viewpoint : Representing the Version Space** 

- How to represent the version space ?
  - Use ellipsoid as outer approximation of set of hypotheses that is consistent with hindsight
  - Nice properties of the Ellipsoid Method
    - Simple updating formula for  $\mathcal{E}(k+1)$
    - $\mathcal{E}(k+1)$  can be larger than  $\mathcal{E}(k)$  in max semi-axis length, but always smaller in volume
    - $vol(\mathcal{E}(k+1)) < e^{-\frac{1}{2n}}vol(\mathcal{E}(k))$ (volume reduction factor degrades rapidly with n)
- Information viewpoint : centroid and the positive definite shape matrix of ellipsoid maintain more information of training data than most existing online learners

#### **Related Work in Online Learning**

- Most are Additive : given a misclassified  $(x_i, y_i)$ , update w by shifting along the direction of  $y_i x_i$ ,  $w + \alpha_i y_i x_i \rightarrow w$
- An quasi-additive framework unifying Perception and Winnow (Grove et al., 01)
- Extend online learning to multilabel cases (Fink et al., 06; Crammer & Singer, 03; Crammer et al., 06)
- Extend graph-based approaches for online learning (Herbster et al., 05)
- Exploited dual formation of optimization for online learning (Shalev-Shwartz & Singer, 06; Amit et al., 07)

# Outline

- Motivation
- Algorithm
  - Introduction to Ellipsoid Method for Convex Programming
  - The Classical Ellipsoid Method for Online Learning (CELLIP)
  - Improved Ellipsoid Method for Online Learning (IELLIP)
  - Ellipsoid Methods for Multiple-Label Online Learning
- Evaluation

**Ellipsoid Method for Convex Programming (Shor, 1977)** 

- $\overline{x}^* = \arg\min\{f(x) : x \in G\}$  where f(x) is convex
  - Starts with  $\mathcal{E}_1 \supseteq G$ .
  - Repeat until *e*-suboptimal
    - $\mathcal{E}_k = \{x | (x x_k)^\top P_k^{-1} (x x_k) \le 1\}$  containing  $x^*$ ,  $x_k \in \mathbb{R}^d$  and  $P_k \in S_{++}^{d \times d}$
    - Compute gradient  $h_k$  of f(x) at  $x^k$
    - Construct half-plane  $\mathcal{P}_k = \{x | h_k^\top (x x_k) \le 0\}$ .  $x^* \in \mathcal{P}_k \cap \mathcal{E}_k$  proved by convexity of f(x)
    - $\mathcal{E}_{k+1} = \{x | (x x_{k+1}) P_{k+1}^{-1} (x x_{k+1}) \le 1\}$  as minimum volume ellipsoid covering  $\mathcal{P}_k \cap \mathcal{E}_k$

$$x_{k+1} = x_k - \frac{1}{(d+1)} \frac{1}{\sqrt{h_k^T P_k h_k}},$$
$$P_{k+1} = \frac{d^2}{d^2 - 1} \left( P_k - \frac{2P_k h_k h_k^T P_k}{(d+1)h_k^T P_k h_k} \right)$$

#### **Classical Ellipsoid Method for Online Learning (CELLIP)**

- A feasibility problem find a solution that is close to the γ-margin classifier u given sequentially received training examples
- $\mathcal{A}_t = \{z \in \mathbb{R}^d | y_i x_i^\top z \ge a\gamma, i = 1, \dots, t\}$  includes all the classifiers that are able to classify with margin  $a\gamma$  training examples received so far
- To efficiently represent  $A_t$ , we construct an ellipsoid

$$\mathcal{E}_t = \{ z \in \mathbb{R}^d | (z - w_t)^\top P_t^{-1} (z - w_t) \le 1 \}$$

such that  $\mathcal{E}_t \supseteq \mathcal{A}_t$ 

• Now our goal is to efficiently reduce  $vol(\mathcal{E}_t)$ , since  $\mathcal{E}_t \supseteq \mathcal{A}_t \supseteq \mathcal{B}$ 

**Classical Ellipsoid Method for Online Learning (CELLIP)** 

Efficiently update the ellipsoid  $\mathcal{E}_t$  given a misclassified example

- Assume  $x_t \in \mathbb{R}^d$  is misclassified by  $w_t : y_t w_t^\top x_i \leq 0$
- $C_t = \{z \in \mathbb{R}^d | y_t x_t^\top z \ge a\gamma\}$ : the half plane generated by  $x_t$ ,  $(u \in C_t \cap \mathcal{E}_t \text{ since } y_t u^\top x_t \ge \gamma)$
- Rewrite the set  $C_t$  as

$$\mathcal{C}_t = \{ z \in \mathbb{R}^d | \alpha_t - g_t^\top (z - w_t) \le 0 \}$$

$$\alpha_t = \frac{a\gamma - y_t w_t^\top x_t}{\sqrt{x_t^\top P_t x_t}}, \quad g_t = \frac{y_t x_t}{\sqrt{x_t^\top P_t x_t}}$$

Note that  $\alpha_t \ge 0$  since  $y_t w_t^\top x_t \le 0$  and  $g_t^\top P_t g_t = 1$ .

A family of updating equations for  $w_t$  and  $P_t$  that ensures  $\mathcal{E}_{t+1} \supseteq \mathcal{E}_t \cap \mathcal{C}_t$ 

**Theorem 1** Given a misclassified instance  $(x_t, y_t)$ , the following updating equations for  $w_{t+1}$  and  $P_{t+1}$  will guarantee that the resulting new ellipsoid  $\mathcal{E}_{t+1}$  covers the intersection  $\mathcal{E}_t \cap \mathcal{C}_t$ :

$$w_{t+1} = w_t + (\alpha_t + \rho) P_t g_t$$
  

$$P_{t+1} = \mu^2 P_t + ([1 - \alpha_t - \rho]^2 - \mu^2) P_t g_t g_t^\top P_t$$

if parameter  $\rho > 0$  and  $\mu > 0$  satisfy the following constraint

$$\frac{1 - \alpha_t^2}{\mu^2} + \frac{\rho^2}{(1 - \alpha_t - \rho)^2} \le 1$$

**Classical Ellipsoid Method for Online Learning (CELLIP)** 

### 1: INPUT:

- $\checkmark$   $\gamma \ge 0$ : the desired classification margin
- $a \in [0, 1]$ : a tradeoff parameter

2: INITIALIZE: 
$$w_1 = 0$$
 and  $P_1 = (1 + (1 - a)\gamma)I_d$ 

- 3: for t = 1, 2, ..., T do
- 4: receive an instance  $x_t$
- 5: predict its class label:  $\hat{y}_t = \operatorname{sign}(w_t^{\top} x_t)$
- 6: receive correct class label  $y_t$
- 7: if  $y_t \neq \hat{y}_t$  then
- 8: compute  $w_{t+1}$  and  $P_{t+1}$  ( $\rho = 0$  and  $\mu = \sqrt{1 \alpha_t^2}$ )

$$w_{t+1} = w_t + \alpha_t P_t g_t$$

$$P_{t+1} = (1 - \alpha_t^2) P_t - 2\alpha_t (1 - \alpha) P_t g_t g_t^{\top} P_t$$

#### 9: **else**

- 10:  $w_{t+1} \leftarrow w_t \text{ and } P_{t+1} \leftarrow P_t$
- -11: end if
- 12: **end for**

#### **Mistake Bound for CELLIP**

**Theorem 2** Let  $\mathcal{D} = \{(x_i, y_i), i = 1, 2, ..., T\}$  be the set of training examples. Assume all the examples are normalized, i.e.,  $||x_i||_2 \leq 1$ . We assume that there exists an classifier  $u \in \mathbb{R}^d$  with  $||u||_2^2 = 1$  that is able to classified all the training examples in  $\mathcal{D}$  with a margin  $0 \leq \gamma \leq 1$ , i.e.,  $y_i u^{\top} x_i \geq \gamma$  for any  $(x_i, y_i)$  in  $\mathcal{D}$ . The number of mistake M made by CELLIP when learning from  $\mathcal{D}$  (Algorithm) is upper bounded by

$$M \le \frac{2\log(1-a) + 2\log\gamma - \log(1 + (1-a)\gamma)}{\log(1 - a^2\gamma^2/(1 + (1-a)\gamma)^2)}$$

**Address Inseparable Case : an improved ellipsoid method** 

Can not cast online learning as a feasibility problem since no classifier can classify all the instances correctly

- Treat w<sub>t</sub> and P<sub>t</sub> as summarization of received training examples
- $w_{t+1}$  is a linear combination of the training examples received in the first *t* trials

$$P_{t+1}^{-1} = \frac{1}{1 - \alpha_t^2} P_t^{-1} + \frac{2\alpha_t}{(1 - \alpha_t)^2 (1 - \alpha_t)} g_t g_t^{\top}$$
$$P_{t+1}^{-1} = \theta_0 P_1^{-1} + \sum_{i=1}^t \theta_i g_i g_i^{\top} \propto \theta_0 P_1 + \sum_{i=1}^t \xi_i x_i x_i^{\top}$$

where  $\theta_i$  and  $\xi_i$  are functions of  $\{\alpha_j\}_{j=i}^t$ .

•  $P_t^{-1}$  is a weighted covariance matrix that stores the second order information of training examples

**Address Inseparable Case : Improved Ellipsoid Method** 

• Modify the updating equation for  $P_t$  as

$$P_{t+1} = \frac{1}{1 - c_t} (P_t - c_t P_t g_t g_t^{\top} P_t)$$

where  $c_t \in [0, 1]$ .

• Set  $c_t = cb^{t-1}$  where  $0 \le c, b \le 1$  are two constants.

$$P_{t+1}^{-1} = (1 - c_t)P_t^{-1} + c_t g_t g_t^{\top}$$

- $P_{t+1}^{-1}$  is a mixture of matrices  $P_t^{-1}$  and  $g_t g_t^{\top}$ .
- Given  $c_t = cb^{t-1}$ ,  $P_{t+1}$  is a weighted sum of  $x_i x_i$  where the weight for  $x_i x_i$  decays exponentially in t
- Vary c and b → adjust "memory" of Pt. The smaller b is, the shorter the memory is

**Improved Ellipsoid Method (IELLIP) for Online Learning** 

**INPUT**:

- $\gamma \ge 0$ : the desired classification margin
- $0 \le c, b \le 1$ : parameters controlling the memory of online learning

INITIALIZE: 
$$w_1 = \mathbf{0}$$
 and  $P_1 = I_d$ 

for 
$$t = 1, 2, ..., T$$
 do

receive an instance  $x_t$ 

```
predict its class label: \hat{y}_t = \operatorname{sign}(w_t^{\top} x_t)
```

receive correct class label  $y_t$ 

if  $y_t \neq \hat{y}_t$  then

compute  $w_{t+1}$  and  $P_{t+1}$  using the modified updating rule

#### else

```
w_{t+1} \leftarrow w_t \text{ and } P_{t+1} \leftarrow P_t
end if
end for
```

Mistake Bound for the Improved Ellipsoid Method

• Measure the progress of online learning by

$$q_t = (u - w_t)^{\top} P_t^{-1} (u - w_t)$$

where u is some optimal classifier;  $P_t^{-1}$  measures the distance between u and  $w_t$ 

**Theorem 3** Let  $\mathcal{D} = \{(x_i, y_i), i = 1, 2, ..., T\}$  be the set of training examples. Let u be the optimal classifier with norm  $|u|_2^2 = 1$ . Assume all the examples are normalized, i.e.,  $||x_i||_2 \leq 1$ . If c and b satisfy c + b < 1, the number of mistakes made by IELLIP is upper bounded by

$$M \leq \frac{1}{\gamma^2} + \frac{2}{\gamma} \frac{1-b}{1-b-c} \sum_{i=1}^T l_i(u)$$
  
where  $l_i(u) = \max(0, \gamma - u^\top x_i)$ .

**Extend the Ellipsoid Method to Multi-label Learning** 

Follow the framework by (Crammer et al.)

- Given x assigned to a subset of classes Y
- Weight vectors for K classes  $w_i \in \mathbb{R}^d, i = 1, \dots, K$
- Classification margin  $\eta(W; x, Y) = \min_{z \in Y} w_z^\top x \max_{z \notin Y} w_z^\top x$
- Loss function  $l(W; x, Y) = \max(0, \gamma \eta(W; x, Y))$
- Construct vector  $v = (w_1, \ldots, w_K)$
- Define class indices  $a_i = \max_{y \notin Y_i} w_y^\top x_i$ , and  $b_i = \min_{y \in Y_i} w_y^\top x_i$ for misclassified  $(x_i, Y_i)$ , i.e.,  $\eta(W; x_i, Y_i) \le 0$

**Extend the Ellipsoid Method to Multi-label Learning** 

• Construct a big vector  $z_i \in \mathbb{R}^{K \times d}$ 

$$z_i^j = \begin{cases} x_i^k & j = (b_i - 1)d + k \\ -x_i^k & j = (a_i - 1)d + k \\ 0 & \text{otherwise} \end{cases}$$

• Construct a half plane  $\mathcal{P}_t$  for each misclassified example  $z_t$ 

$$P_t = \{ v \in \mathbb{R}^{K \times d} | \alpha_t - (v - v_t)^\top g_t \le 0 \}$$

where  $\alpha_t$  and  $g_t$  are identical the expressions in (1) except that  $y_t x_t$  is replaced by  $z_t$ .

• Directly extend to multi-label learning, by definition of classifier v, misclassified example  $z_i$ ,  $\alpha_t$  and  $g_t$ 



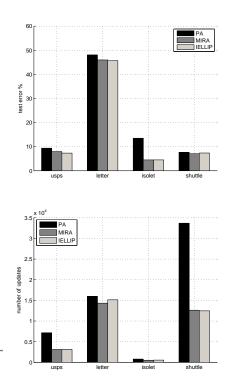
- Motivation
- Algorithm
- Evaluation
  - Datasets, Baseline Methods & Evaluation Metrics
  - Results of Multiclass Classification

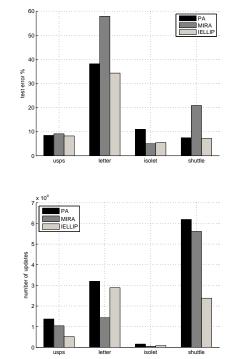
#### **Experiment Setup**

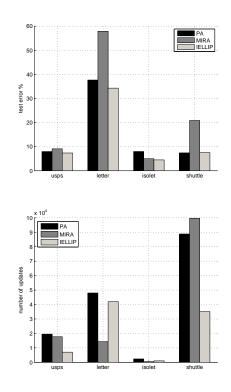
- We evaluate IELLIP, since CELLIP cannot handle inseparable cases and outperformed by IELLIP
- Initialize *P*<sub>1</sub> as identity matrix at the scale of 0.1; randomly initialize w around the origin
- Datasets : USPS, UCI Letter, UCI Isolet, UCI Shuttle
- Baselines : Online Passive-Aggressive Algorithm(PA)(Crammer et al., 06) and Margin Infused Relaxed Algorithm (MIRA)(Crammer & Singer, 03)
- All use linear classifiers. Margin = 0.1
- Test error: # mistake made on a given sequence normalized by its length

#### **Results of Multiclass Classification**

- PA better than generalized Perceptron algorithms due to the aggressiveness (large margins)
- test error of IELLIP better than the best of PA and MIRA.
- a smaller # updates by IELLIP to achieve better test error than PA and MIRA.
- IELLIP is more efficient than baselines







## Conclusion

- This work is the first attempt to explicitly represent version space
- Represent the version space by the ellipsoid method, capturing all classifiers consistent with training examples
- Same mistake bounds with perceptron up to a const. factor
- Shape matrix stores more information of training examples, and provides additional controls
- Geralized to multi-label learning
- Empirical effectiveness of IELLIP, compared with state-of-the-art online learners