Discovering Options
from Example
Trajectories

Peng Zang
Peng Zhou
David Minnen
Charles Isbell

Georgia GCoaollege of
The Laboratory for Tech | Compuiing

Interactive Artificial Intelligence



If we had a few expert traces.
trajectories of the problem being solved

We can find problem

decompositions
by examining those trajectores

And solve the problem faster



State features:
X —taxi X

Y —-taxiY

P — passloc

D — destination

Actions:
N — North
S — South
E — East
W — West
P — Pickup
D — Dropoff

Taxi Domain

destination




Problem Decomposition

goto(passloc)

Taxi task

e .

pickup dropoff
passenger passenger
pickup goto(dest)

dropoff




Problem Decomposition

* Recognition

North, north, west, west, west, pickup, south,
south, south, south, dropoff

goto([), pickup, goto([ 1), dropoff

pickup-passenger, dropoff-passenger




Problem Decomposition

» Transfer
- Skills applicable to other tasks

goto(7), goto( 1)

- Decomposition applicable to other action sets

pickup-passenger, dropoff-passenger




Problem Decomposition

goto() pickup-passenger
State features: State features:
X —taxi X X —taxi X
Y —-taxi Y Y —-taxiY
P — passloc
Actions:
N — North Actions:
S — South R — goto(™)
E — East G — goto(™)
W — West Y — goto( )
B — goto()
P — Pickup
» Speedup

- Breaks up the problem
— Abstraction opportunities in subproblems

- Reuse




Focus of this work:

Automating decomposition by
finding and factoring out subtasks

» Action sequences contain sighatures

Finding y use to find good subtasks

decomposiion . Heuristic for finding good subtask boundaries:

N “abstraction boundaries”

|  Direct incorporation of options
Using

decomposition solve transition and reward model




Definitions
SMDP: (S, A, P, R, V)

feature based representation

known transition/reward model and action
feature dependencies

Subproblem: (M, F, A, w)

Option: (I, 1T, B)

Trajectory: (s,a,s',d,r) sequence
State Action NextState Duration Reward
X:0Y:.0 East X:1Y:.0 1 -1

X:1Y:0 East X:2Y:0 1 -1
X:2Y:.0 Airport X:9Y:.8 20 -15




Automated Decomposition

(What are good subproblems?)

» Size: large enough to capture a significant
portion of the problem but not the whole thing

» Frequency: reuse opportunities

» Abstraction: offers significant speedups




Automated Decomposition

Observation: Subproblems of significant size and
frequency leave long, common action seguences In
the trajectories that act as “signatures”

Intuition: We can use these “signatures” to find good
subproblems

Observation: Different subproblems require different
state features

Intuition: Use “abstraction breaks” to find subtask
boundaries.




Discovery Algorithm

Suffix tree to find common action sequences
Extend to find goals

Choose subtask based on most frequent goal
Find and extract all instances of subtask
Repeat




Automated Decomposition

Trajectories
WWWNNPSSSSD

EESSPWWWNNNWND

= NNEPSSSSD

NNWWWPSESSSEEED

WPNNNND

WPSSSEEESED




Automated Decomposition

Trajectories

WWWNNPSSSSD

EESSPWW NNNWND

= NNEPSSSSD

WWPSESSSEEED
W

NNNND

WPSSSEEESED

Find common action sequences using suffix tree




Automated Decomposmon

X:0 Y:0
Trajectorles
WW sss :

EESSPWW

= v NNEPSS

NNWWWPSESSSEEED

WRNN | |§

WPSSSEEESED we are navigating, only

worrying about taxi
location (X,Y). Now
with the Pickup action
we also need to worry
about passenger
location. Let's make

Extend to find goals. this a boundary.

We stop when the abstraction suddenly
changes. Intuition is that this denotes a
conceptual boundary. It also maximizes
speedup opportunities.




Automated Decomposition

: :
Trajectories
WW PSSSSD

EESSPWWWHN )| D

- ~ INNEPSS

NNWW PS%/SSSEEED

WPNMN )

WPSSSEEESED

Most common goal selected.
This creates subproblem:

M: Taxi SMDP

F: X, Y

A: NW

w: X:0Y:0




Automated Decomposition

Extract subproblem:

a — Goto (X:0 Y:0)

Note: we estimate the
speed up for any
proposed subproblem.
We only perform
extraction if we expect
it to offer speedup

Trajectories
WWWNNPSSSSD
EESSPWWWNNNWND
NNEPSSSSD
'NNWWWPSESSSEEED

WPNNNND
'WPSSSEEESED

New Trajectories
aPSSSSD
EESSPoD
NNEPSSSSD
aPSESSSEEED
WPaD
0PSSSEEESED




Automated Decomposition

Trajectories
aPSSSSD

EESSPaD

= NNEPSSSSD

oPSESSSEEED

WPaD

aPSSSEEESED

Repeat finding additional subproblems until no
subproblems are found. Subproblems are solved
and inserted into the base problem. When no more
subproblems can be found, we solve the augmented
MDP.




Results

Menu (Fi0) #£(10,0000  ==]s.000 [35.000
P [ r Do it! Do it pow!

|
I
}
I

|
- :'!.-.:

Two Domains

Taxi World
Wargus (Simplified)




Taxi World

p State features: Actions:
X —taxi X N — North
Y —taxi Y S — South
- P — Pickup E — East
location W — West
D — Destination P — Pickup
5 D — Dropoff

» Classic RL Problem
» Easily scalable, good for testing
* Deterministic and stochastic versions




Wargus (Simplified RTS)

Features: Actions:
Gold (hundreds) No-op
Wood (hundres) GotoGoldmine
Grunts GotoWoods
Farms GotoTownhall
LumberMill Chop
Barracks Mine
Blacksmith Deposit
Time-of-day BuildFarm
Location BuildBarracks
Status BuildLumbermill

BuildBlacksmith
TrainGrunt

| » Strategic planning problem
» Focuses on learning build order for grunt rush
* More features

) NS S




Robustness

! 1 ! ! | | I |
0 - = N
-l
00 - ‘
=
E E
% el # = » Opleam (non-deterministic) ] % *
E’ #—s Opleam (deterministic) E’ Y *gpl’““ 'l“""l’_‘"_"'"_"""“‘] * i
E # - # V] (noo-deterministic) Z = Opleam [determinisiic) :
-600 »—s V1 (delerministic) - # = & V[ (non-determinisiics :
#—a VI {delerministic) p
40 Lo _
-BO0 — .-
we
-
.
1 . l i l wl el el el
-1000 -50
1] 8 12 14 0.l 1 10 100
Mumber of example imjeciorics Tempemture

Number of expert Quality of expert
trajectories trajectories




le+10 T T T T T T
3
“ i ]
E [
=
E Te+iE ]
=]
o
3
-
-E.
g
k=
E Le+0 .
=
i
10000 | . | . | . | 1
Le-+05 2e+05 3e+05 Ae+05 5405
Mumber of slates

One passenger

[

Mumber af expecied valie opemtians

Two passengers

L
TeHls




T

Discovered Options (Taxi)

F.

p

_ l

»  PickUp and Goto|[ |

=

«  Goto




Discovered Options (Wargus)

Low level options

Mine gold Chop wood

(goto-goldmine, mine, deposit, etc.) (goto-woods, chop, deposit, etc.)

High level options

Build a lumbermill Build a farm
(chopwood, build-lumbermill, etc.) (minegold, build-farm, etc.)




Conclusion

» Use expert traces for problem decomposition
» Requires
- Feature based state representation

- Known transition/reward model and action
feature dependencies

- Some expert traces

* Buys you
- Problem decomposition
- Speedup




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

