Introduction	Partially Supervised AROM	Experiments	Conclusions

Partially Supervised Feature Selection with Linear Regularized Models

Thibault Helleputte & Pierre Dupont thibault.helleputte@uclouvain.be http://www.ucl.ac.be/mlg

Machine Learning Group, Université catholique de Louvain

June 10, 2009

Introduction •••••••	Partially Supervised AROM	Experiments	Conclusions
Feature Selection with HD-Data			
Microarray Da	ata		

Microarrays measure genes expression

	gene 1	gene 2	•••	gene n	class label
sample 1	<i>x</i> _{1,1}	<i>x</i> _{1,2}		х_{1,n}	<i>Y</i> 1
sample 2	<i>x</i> _{2,1}	<i>x</i> _{2,2}		x _{2,n}	<u>У</u> 2
sample m	<i>x</i> _{m,1}	<i>x</i> _{m,2}		x _{m,n}	Уm

Class labels come from external annotation.

Introduction •••••••	Partially Supervised AROM	Experiments	Conclusions
Feature Selection with HD-Data			
Microarray D	ata		

Microarrays measure genes expression

	gene 1	gene 2	•••	gene n	class label
sample 1	<i>x</i> _{1,1}	<i>x</i> _{1,2}		х_{1,n}	<i>Y</i> 1
sample 2	<i>x</i> _{2,1}	<i>x</i> _{2,2}		x _{2,n}	<u>У</u> 2
sample m	<i>x</i> _{m,1}	<i>x</i> _{m,2}		x _{m,n}	Уm

- Class labels come from external annotation.
- With recent technology, $n \approx 55000$
- Very expensive technology, so $m \le 300$

Partially Supervised AROM

Experiments

Conclusions

Feature Selection with HD-Data

Microarray Data Analysis

Microarray data classification

- Diagnosis, Prognosis
- Clinical, Pharmaceutical applications

Partially Supervised AROM

Experiments

Conclusions

Feature Selection with HD-Data

Microarray Data Analysis

Microarray data classification

- Diagnosis, Prognosis
- Clinical, Pharmaceutical applications

Feature Selection on Microarray data

Signature discovery:

- Explanatory concerns (no feature extraction)
- Diagnosis/Prognosis Kits
- May improve classification performances

Introduction	Partially Supervised AROM	Experiments	Conclusions
000000	0000	00000	0000
Feature Selection with HD-Data			
SVM RFE			

SVM generally show good classification performances and extensions for feature selection exist.

Introduction	Partially Supervised AROM	Experiments	Conclusions
Feature Selection with HD-Data			
SVM RFE			

SVM generally show good classification performances and extensions for feature selection exist.

RFE [Guyon et al., 2002]

- RFE iteratively trains a linear SVM and drops the features decreasing the less the margin.
- Embedded technique, using classifier structure

Introduction	Partially Supervised AROM	Experiments	Conclusions
Feature Selection with HD-D	ata		
Zero-Norm	Minimization		

$\text{min}_{\bm{w}} ||\bm{w}||_0^0$

subject to:
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$$

where
$$||\mathbf{w}||_0^0 = card\{w_i | w_i \neq 0\}$$

Elegant embedded formulation

- This problem has been shown to be NP-Hard
- Relaxations have been proposed...

Partially Supervised AROM

Experiments

Conclusions

Feature Selection with HD-Data

AROM Methods [Weston et al., 2003]

Previous problem solved with the following approximation:

Approximation to zeRO-norm Minimization

 $\min_{\mathbf{w}} \sum_{j=1}^{N} \ln(\varepsilon + |w_j|)$

subject to: $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$

where $0 < \varepsilon \ll 1$

T. Helleputte & P. Dupont

Introduction	Partially Supervised AROM	Experiments	Conclusions
0000000	0000	00000	0000
Feature Selection with HD-D	bata		
/2-AROM	Method		

The previous problem leads to a nice algorithm:

I2-Approximation to zeRO-norm Minimization

• At step
$$k = 0$$
, initialize $\mathbf{w}_k = (1, ..., 1)$

Iterate until convergence:

1 $\min_{\mathbf{w}} ||\mathbf{w}||_2^2$

subject to: $y_i(\mathbf{w} \cdot (\mathbf{x}_i * \mathbf{w}_k) + b) \ge 1$

2 Let $(\bar{\mathbf{w}})$ be the solution, set $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k * \bar{\mathbf{w}}$

Note: * denotes component-wise product.

Introduction	Partially Supervised AROM	Experiments	Conclusions
000000			
Feature Selection with HD-Data			
Problems wi	ith HD-Data analys	sis	

When $m \ll n$: undetermined system, even with linear models!

Introduction ○○○○○○●	Partially Supervised AROM	Experiments	Conclusions
Feature Selection with HD-Data			
Problems with	HD-Data analysis		

When $m \ll n$: undetermined system, even with linear models!

Regularization needed (Ex: max margin). Still: Overfitting, lack of robustness.

Introduction	Partially Supervised AROM	Experiments	Conclusions
	0000		
Partial Supervision			
Stronger i	nductive bias		

- Need for stronger regularization / inductive bias
- Problem: where to find extra-information?

Introduction	Partially Supervised AROM	Experiments	Conclusions
0000000	0000	00000	0000
Partial Supervision			
Stronger i	nductive bias		

- Need for stronger regularization / inductive bias
- Problem: where to find extra-information?
- Ask the field experts.

Introduction	Partially Supervised AROM	Experiments	Conclusions
	0000		
Partial Supervision			
Stronger	nductive bias		

- Need for stronger regularization / inductive bias
- Problem: where to find extra-information?
- Ask the field experts.

Prior Knowledge About Feature Relevance

- Field experts may know or guess that *some* features are likely to be more relevant
- Even if partial/insufficient for a complete model,...
- Even if imprecise,...
- ... it is extra knowledge

Partially Supervised AROM

Experiments

Conclusions

Partial Supervision

Partially Supervised Feature Selection

- PSFS = use of prior knowledge on feature relevance to bias feature selection.
- Full supervision on class labels

Partially Supervised AROM

Experiments

Conclusions

Partial Supervision

Partially Supervised Feature Selection

Partially Supervised Feature Selection

- PSFS = use of prior knowledge on feature relevance to bias feature selection.
- Full supervision on class labels

Partially Supervised Selection vs. Semi-Supervised Classification

- Semi-Supervised Classification uses both labeled and unlabeled samples to build a classification model.
- PSFS \neq Feature Selection techniques for Semi-Supervised Classification.

Experiments

PS-AROM

Partially Supervised AROM

- Relevance vector β
- Prior relevance of feature *j* encoded in β_j .
- The more (a priori) relevant feature *j*, the higher β_j .
- If no information on j, $\beta_j = 1$.

Partially-Supervized Approximation to zeRO-norm Minimization

$$\min_{\mathbf{w}} \sum_{j=1}^{N} \frac{1}{\beta_j} ln(\varepsilon + |\mathbf{w}_j|)$$

```
subject to: y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1
```

```
where 0 < \varepsilon \ll 1.
```

Introduction	Partially Supervised AROM	Experiments	Conclusions
	0000		
PS-AROM			
PS-/2-AR	OM Method		

Partially-Supervized I2-Approximation to zeRO-norm Minimization

- At step k = 0, initialize $\mathbf{w}_k = \beta$
- Iterate until convergence:
 - 1 min_w $||w||_2^2$

subject to: $y_i(\mathbf{w} \cdot (\mathbf{x}_i * \mathbf{w}_k) + b) \ge 1$

2 Let $(\bar{\mathbf{w}})$ be the solution, set $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k * \bar{\mathbf{w}} * \beta$

Partially Supervised AROM

Experiments

Conclusions

Datasets

4 Microarray Datasets

Data Set	Samples	Features	Priors	Ref.
DLBCL	77	7129	75%/25%	[Shipp et al. '02]
Leukemia	72	7129	65%/35%	[Golub et al. '99]
Prostate	102	6033	51%/49%	[Singh et al. '02]
Colon	62	2000	65%/35%	[Alon et al. '99]

Introduction	Partially Supervised AROM	Experiments	Conclusions
		0000	

Evaluation Metrics

Robustness: Stability Index [Kuncheva, 2007]

- Shared features among k signatures **S** of size s.
- Kuncheva Index: $K({\mathbf{S}_1, \dots, \mathbf{S}_k}) = \frac{2}{k(k-1)} \sum_{i=1}^{k-1} \sum_{j=i+1}^k \frac{|\mathbf{S}_i \cap \mathbf{S}_j| \frac{s^2}{n}}{s \frac{s^2}{n}}$

 $-1 < K \le 1$, *n* is the total number of features and **S**_{*i*}, **S**_{*j*} are two signatures.

Classification Performances: BCR

- Stability alone cannot characterize a signature quality.
- Balanced Classification Rate: $BCR = \frac{1}{2} \left(\frac{TP}{P} + \frac{TN}{N} \right)$
- Unbalanced data: BCR preferred to accuracy.
- Average between *specificity* and *sensitivity*.

T. Helleputte & P. Dupont

Experiments

Protocol 1: Real Prior Knowledge

For DLBCL and Leukemia, 2-3 genes are used as clinical markers

- 1 Set all β_j to 1, except those corresponding to used markers: $\beta_{markers} = 10$
- 2 Repeat 200 times:
 - 1 Split data into 90% train 10% test
 - 2 Normalize Select Feature Build model on training part
 - 3 Evaluate BCR on test part
- Average the BCRs and compute Stability (Kuncheva Index) on the 200 selected sets of features

Introduction	Partially Supervised AROM	Experiments	Conclusions
Evaluation			

DLBCL with 2 favored genes

Stability

Classification Performances

T. Helleputte & P. Dupont

Introduction 0000000	Partially Supervised AROM	Experiments	Conclusions
Evaluation			

Colon with simulated knowledge

Stability

Classification Performances

T. Helleputte & P. Dupont

Introduction	Partially Supervised AROM	Experiments	Conclusions ●○○○
Conclusion			
Take Horr	ne Messages		

- Stability should be considered for feature selection evaluation (but not alone).
- PSFS allows to include prior knowledge on a priori important dimensions while letting the feature selection procedure depart from it.
- PSFS naturally extends AROM methods.
- PSFS increases stability of selected features with respect to sampling variations.
- Partial Supervision also improves classification performances in most cases.
- Multivariate method: supervision of few dimensions influence the selection of other ones.

Introduction	Partially Supervised AROM	Experiments	Conclusions
			0000
Conclusion			

Thank you

T. Helleputte & P. Dupont

Partially Supervised AROM

Experiments

Conclusions ○○●○

Extra Slides

RFE / AROM / PS-AROM

RFE, /2-AROM and PS-/2-AROM can be rephrased in a unified framework with different update rules for **w**:

RFE

•
$$w_{i,k+1} \leftarrow w_{i,k} \ \forall i \mid \bar{w}_i \neq \min \bar{w}_i$$

•
$$w_{i,k+1} \leftarrow 0$$
 if $\bar{w}_i == \min \bar{w}_i$

/2-AROM

$$w_{i,k+1} \leftarrow w_{i,k} \times \bar{w}_{i,k} \ \forall i$$

PS-/2-AROM

$$w_{i,k+1} \leftarrow w_{i,k} \times \bar{w}_{i,k} \times \beta_i \ \forall i$$

T. Helleputte & P. Dupont

Introduction	Partially Supervised AROM	Experiments	Conclusions
			0000
Extra Slides			
Turneters	a second second		

