Trajectory Prediction: Learning to Map Situations to Robot Trajectories

and Robotics Group

Nikolay Jetchev and Marc Toussaint TU Berlin Berlin Machine Learning and Robotics Group

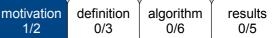
June 17th, 2009 ICML

Talk content

- Movement generation and motivation
- Define trajectory prediction
- Describe the prediction algorithm
- Experiments, results and conclusions

Biological Inspiration

- Humans and animals execute complex movements 'instantly'
- Don't plan a trajectory, but quickly choose
 - a good movement
- Reactive trajectory policy
- How do people manage to do it?
 - Experience in repeating movements
 - Capabilities of our bodies (proprioception)
 - Familiar obstacles and spaces



total

Apply to robot movement planning

definition

0/3

motivation

212

algorithm

0/6

results

0/5

total

- Robots are slower to generate movement, optimize from scratch without prior knowledge
- A novel approach trajectory prediction
- The essence: a mapping from a situation to a whole trajectory
 - Observe patterns in situation-movement pairs
 - Choose quickly an approximately good trajectory
- Gain for robotics: speed up movement generation by learning an approximate situation-movement mapping

Robot movement basics

algorithm

0/6

results

0/5

total

5/19

motivation

212

definition

- $\triangleright q_t$ is the robot posture, angles of all joints at time t
- > The obstacle positions and q_t fully define the current situation
- > Trajectory $q = (q_0, ..., q_T)$ for some time horizon T

motivation

definition

algorithm

results

total

6/19

- A cost function characterizes good movements for the specified tasks
- Energy efficient trajectories with no collisions have low cost

>
$$C(x, q) = \sum_{t=1}^{T} g(q_t) + h(q_t, q_{t-1})$$

A trajectory optimization algorithm finds the best movement for

a given situation

>
$$x \mapsto q^* = \operatorname*{argmin}_{q} C(x, q)$$

Trajectory prediction for faster optimization

- Approximate the mapping $x \mapsto q^*$
- Solution Gather data $D = \{(x_i, q_i)_{i=1}^d\}$ of optimized movements
 - Use any classical method for movement optimization
- Use this data to find quickly good initial trajectories
 - Methods like iterated Linear Quadratic Gaussian(iLQG) and gradient

descent very sensitive to initialization

- Good starting values can improve them drastically

Prediction algorithm overview

- > Train: gather data D and learn to predict
- \triangleright Test input: situation x
 - Predict trajectory $oldsymbol{q}_i$ from D
 - Transfer \mathbf{q}_i to the current situation x
- Test output: transferred trajectory q^*

Situation descriptor

- The world situation is specified by robot posture and object positions
- \triangleright Model situation representation x as a high-dimensional

feature vector $x = (q_0, p, o) \in \Re^{791}$

- q_0 is initial posture vector
- *p* is vector of pairwise distances btw centers of 20 objects
- *o* is vector of z axis cosine between 20 objects in scene

motivation definition algorithm results total 10/19

Feature selection

- Why these features?
 - Much information about world situation
 - Highly redundant, a lot of coordinate systems and measurements
- Feature selection can refine the descriptor
 - sparse 50 features

$$P(f(x) = \mathcal{T}_{x_i x} q_i) = \frac{1}{Z} \exp\{-\frac{1}{2}(x - x_i)^T W(x - x_i)\}$$

$$\mathbb{E}\left\{C(x, f(x))\right\} = \sum_{i=1}^{d} P(f(x) = \mathcal{T}_{x_i x} \boldsymbol{q}_i) C(x, \mathcal{T}_{x_i x} \boldsymbol{q}_i)$$

 $\min_w \sum_{x \in D} \mathrm{E}\left\{C(x,f(x))\right\} + \lambda |w|_1$

Feature	w_i^2
$p_{waist-table}^{y}$	20.7
$p_{chest-table}^{x}$	17.3
$p_{target-table}^{x}$	16.8
$p_{back-table}^{y}$	14.2
$p_{neck-target}^{z}$	11.4
$p_{wristR-target}^{z}$	8.9

NN for prediction

Nearest neighbor over database situations – NN

- $k(x^*, x_i) = \exp\{-\frac{1}{2}(x^* - x_i)^\top W(x^* - x_i)\}$ as a diagonal Gaussian

similarity metric

- $\hat{i} = \underset{i}{\operatorname{argmax}} k(x_i, x)$
- > The predicted movement is $q_{\hat{i}}$, the trajectory of the most

similar previous situation

Classification for trajectory prediction

motivation

2/2

definition

3/3

algorithm

5/6

results

0/5

total

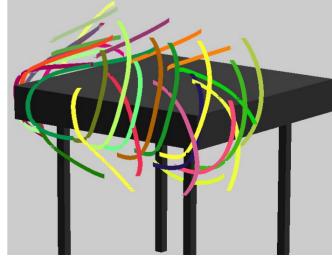
- Classify situations according to movement type Cluster
 - Select a smaller representative movement subset by clustering ${\cal D}$
 - Take cluster average movements as new trajectory set
 - Gather dataset with lowest cost prototypes for each movement
 - Train a SVM on this data

Situation transfer

- Repeating a movement in joint space is not likely to be good
 - Different object positions between situations
- \triangleright We need to transfer to the new situation x
 - Task space -coordinates of finger relative to obstacle
 - Project from joint space to task space and then back project via

inverse kinematics (IK)

- Prioritized IK avoid collisions
- Call this the transfer operator T_{x_ix}



definition

3/3

algorithm

6/6

results

0/5

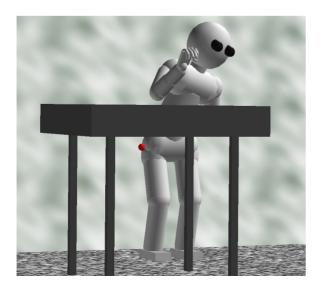
total

13/19

motivation

Experiments

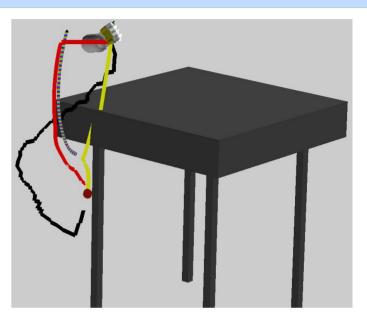
- Use in simulation a humanoid torso with 31 joints
- Reach red point target with finger without colliding with the table
- Generate world scenarios by randomly sampling robot
 - posture, target and obstacle positions



Compared methods

- iLQG with different initializations
 - NN prediction
 - Cluster prediction
 - Linear interpolated path
 - Rapidly Exploring Random Tree (RRT) path
- Good initial trajectory will speed-up iLQG convergence
 - It corresponds to a reasonable table avoidance path
- A single iLQG iteration: 0.065 s, prediction + transfer 0.1s, RRT –

more than 1.5s for 2000 nodes



Results: time until convergence

- Cluster converges in 98.4% of scenarios to correct results (linear 85%)
- NN converges much faster
 - 0.32s for first feasible solution (linear 1.3s)
 - 0.9s for convergence (linear 1.96s)
- Sparse feature selection improves results

Method		$\epsilon = 0.2$	$\epsilon = 0.15$	$\epsilon = 0.1$	$\epsilon = 0.05$
Linear	#	31	41	63	155
	μ	1.26 ± 0.04	1.29 ± 0.05	1.4 ± 0.05	1.96 ± 0.07
NN^{Euclid}	#	4	6	9	52
	μ	$0.4\pm$ 0.01	0.47 ± 0.01	0.62 ± 0.02	1.14 ± 0.04
LWR^{Euclid}	#	4	9	19	58
	μ	0.39 ± 0.01	0.45 ± 0.01	0.59 ± 0.02	1.05 ± 0.04
NN^{Opt}	#	2	3	4	33
	μ	0.32 ± 0.01	0.36 ± 0.01	0.47 ± 0.01	0.83 ± 0.02
LWR^{Opt}	#	3	4	16	49
	μ	0.31 ± 0.01	0.35 ± 0.01	0.45 ± 0.01	0.76 ± 0.03
Cluster	#	1	1	2	16
	μ	0.39 ± 0.01	0.45 ± 0.01	0.57 ± 0.01	1.02 ± 0.03

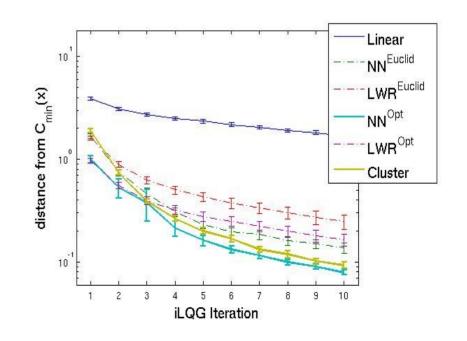
motivationdefinitionalgorithmresults2/23/36/64/5

total

17/19

Results: iLQG iteration analysis

- Another view: cost convergence per iLQG iteration
- The prediction methods achieve very low costs in few iterations
- RRT not competitive:
 - much slower than linear



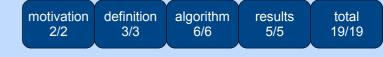
motivation definition algorithm results 2/2 3/3 6/6 5/5

total

18/19

Conclusions and future work

- Trajectory prediction can speed-up computation drastically
- Data representation should be carefully designed to transfer knowledge
 - Information in situation descriptor and transfer task space
- Future directions: more challenging movement problems
 - Dynamic worlds
 - Cluttered scenes
 - More complex manipulations grasping



The End

- Thank you for your time.
- More info at <u>http://user.cs.tu-berlin.de/~jetchev/</u>

