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Stochastic Relational Worlds

Simulator example
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The Problem

Goal: control an autonomous agent in an unknown 
environment for varying goals
Model-based approach: learn a world model                  
and use this model to plan actions

Requirements for world models:
– Noise
– Stochastic action effects
– Generalize to new situations
– Learned from experience

Requirements for planning:
– Fast
– Robust
– Varying goals

Novel planning 
approach

We employ noisy 
probabilistic 
relational rules.
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Background: Representation

Symbolic relational representation

States

Actions
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Background: Relational rules

Noisy indeterministic deictic rules (Pasula, Zettlemoyer 
and Kaelbling, 2007)
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Background: SST Planning

Existing method for planning with NID rules:
sparse sampling trees (SST) planning (Kearns et al., 2002)
– Near optimal, but highly inefficient.
– Planning horizon
– Branching factor

Leaves at 
horizon    :
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Our planning approach

PRADA: probabilistic relational action-sampling 
               in dynamic Bayesian networks 
               planning algorithm

Plan in relational worlds by means of inference
We sample action sequences and infer posteriors over 
hidden state variables.

(1)  Convert NID rules to 
   dynamic Bayesian networks (DBNs)

(2) Approximate inference algorithm
to predict effects of action sequences

(3)  Informed sampling strategy for action sequences
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Convert NID rules to DBNs

For rule-set     and set of objects   , ground all rules:

etc.

State random variable

Context random variable

Outcome random 
variable

Action random variable

Rule random variable
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Convert NID rules to DBNs

DBN model for K ground rules
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Approximate Inference

Exact inference is intractable in our graphical model.

Idea of the factored frontier algorithm (Murphy & Weiss, 
2001): approximate belief with a product of marginals

Based on this approximation, we derive a filter method
to propagate action effects forward:
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Approximate Inference

Let                                    and                                                  .  
                                                  
We calculate:
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Informed action sequence sampling

Informed sampling strategy: sample “sensible” action 
sequences               with high probability

Compute posteriors over rewards by means of 
approximate inference

Choose first action of best action sequence

An extension: Adaptive PRADA
– Can      be further improved by deleting some actions?
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Results

3 experiments with different planning goals

Learn rule-sets in a world of 6 blocks

Test worlds with different blocks and block numbers.
         Generalization from training world to test worlds.

For 10 objects:
– Number of states 
– Number of actions  
– For planning horizon              , number of possible

action sequences:
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Results – Three specific blocks

Build tower with three specific blocks.

Can be achieved with four actions.

b = branching factor

log-scale!!

PRADA has high 
performance with 
small planning time!

SST either performs 
badly (small b) or is 
extremely slow (large b).
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Results – Reverse tower
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Conclusions

Efficient planning method 
for probabilistic relational rules 
based on approximate inference.

Intelligent agent can now 
– learn dynamics of complex stochastic world 
– and quickly derive appropriate actions for varying goals 

generalizing to similar, but different worlds.
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Thank you for your attention!

More information:
http://cs.tu-berlin.de/~lang/
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