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Motivation: Discrete agents in a continuous world

Current Algorithms

Can easily handle continuous state spaces

Mostly handle discrete action spaces

Real-world problems

Many problems have continuous control variables

The problem

Current continuous-action approaches are often inefficient

Can we control continuous variables using discrete decisions?
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Markov Decision Process

Markov Decision Process

MDP µ = (S,A,P,R, γ,D)

S is the state space

A is the action space

P is the transition model: P(s ′|s, a)

R is the reward function: R(s, a)

γ ∈ (0, 1] is the discount factor

D is the initial state distribution

µ

at

st st+1

rt+1

Markov Property

Transitions and rewards are independent of history
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Planning

Optimization

Optimize the expected total discounted reward

Es∼D ; at∼? ; st∼P

( ∞∑
t=0

γtrt

∣∣∣ s0 = s

)

Policy π

A way of making decisions in all situations

Deterministic policy: a mapping from states to actions

There exists at least one deterministic optimal policy π∗

Algorithms

Value iteration, policy iteration, linear programming
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Learning

Interaction

Transition model and reward function are unknown

Repeated interaction with an unknown process

Sample at time t: (st , at , rt , st+1)

Reinforcement Learning

Prediction: learn/predict the value of a fixed policy

Control : learn a good policy for controlling the process

Algorithms

Prediction: DUE, TD-Learning, LSTD, . . .

Control: Q-Learning, Sarsa, LSPI, FQI, . . .
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The need for continuous actions in control

Benefits

Smoothness of motion

Power consumption

Mechanical stresses

Induced power line noise

Problems

An infinite number of choices at each step

Tabular approaches are not sufficient

Discrete maximization is not sufficient

Fine discretization is inefficient
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Binary Action Search

Choosing continuous actions

Choosing a continuous action value in a single step is hard!

How about breaking this hard decision into many easier ones?

Idea

Given a continuous action value in some state ...

... decide whether it’s better to increase it or decrease it!

Multi-step action choice

Need a discrete binary policy π : S ×A 7→ {Inc,Dec}
Perform N-step binary search over the action space

Successively approximate the best continuous action value

Anytime algorithm: more accurate action choice with larger N

Jason Pazis and Michail G. Lagoudakis, ICML 2009 Binary Action Search



Introduction
Binary Action Search

Experiments
Conclusion

Binary Action Search
Properties

Binary Action Search

Choosing continuous actions

Choosing a continuous action value in a single step is hard!

How about breaking this hard decision into many easier ones?

Idea

Given a continuous action value in some state ...

... decide whether it’s better to increase it or decrease it!

Multi-step action choice

Need a discrete binary policy π : S ×A 7→ {Inc,Dec}
Perform N-step binary search over the action space

Successively approximate the best continuous action value

Anytime algorithm: more accurate action choice with larger N

Jason Pazis and Michail G. Lagoudakis, ICML 2009 Binary Action Search



Introduction
Binary Action Search

Experiments
Conclusion

Binary Action Search
Properties

Binary Action Search

Choosing continuous actions

Choosing a continuous action value in a single step is hard!

How about breaking this hard decision into many easier ones?

Idea

Given a continuous action value in some state ...

... decide whether it’s better to increase it or decrease it!

Multi-step action choice

Need a discrete binary policy π : S ×A 7→ {Inc,Dec}
Perform N-step binary search over the action space

Successively approximate the best continuous action value

Anytime algorithm: more accurate action choice with larger N

Jason Pazis and Michail G. Lagoudakis, ICML 2009 Binary Action Search



Introduction
Binary Action Search

Experiments
Conclusion

Binary Action Search
Properties

Binary Action Search

Binary Action Search (s, π,N)
// s : The current state of the process
// π : A policy making binary decisions, +1 or −1
// N : The number of resolution bits

a← (amax + amin)/2 // Initialize a
∆← (amax − amin)2N−1/(2N − 1) // Initialize ∆

for i = 1 to N do
∆← ∆/2 // update ∆
e ← π(s, a) // binary decision (+1 or −1)
a← a + e∆ // update a

end for
return a
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Learning Binary Policies

Requirements

continuous augmented state space (S,A)

discrete binary action space {Increase (+1),Decrease (−1)}
most reinforcement learning algorithms can be used

Learning Data

need to get sample transitions for the transformed MDP

for each actual transition sample with a continuous action ...

... generate N transition samples with discrete actions
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A Simple Example

A simplified domain

Continuous action range [1.0, 8.0]

N = 3 (3-bit resolution)

Actual sample

s s ′
a = 2.0

r

Derived samples

s, 4.5 s, 2.5 s, 1.5 s ′, 4.5
−1 (a = 2.5)

0

−1 (a = 1.5)

0

+1 (a = 2.0)

r
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Properties

Optimality

Searching for the single best action - no local optima

Integration

BAS can be combined with most existing RL algorithms

The RL algorithm needs to support continuous state spaces

Decisions over an augmented state space: (S,A)

Efficiency

Needs only a binary search policy

Scales logarithmically with the resolution
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Inverted Pendulum

Balancing a pendulum at the upright position

States: vertical angle θ and angular velocity θ̇

Discrete actions: three actions [−50 N, 0 N, +50 N]

Continuous actions: 28 equally spaced in [−50 N, +50 N]

Uniform noise in [−10N, +10N] is added to all actions
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Inverted Pendulum

Learning Setup

Training samples collected in advance from “random episodes”

Starting in a randomly perturbed state near equilibrium

Following a policy that made random decisions

Parameters

Reward function: −((2θ/π)2 + (θ̇)2 + (F/50)2)

|θ| > π/2 signals the end of episode and a reward of −1000

Discount factor γ = 0.95

Control interval dt = 100 msec
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Basis Functions

Augmented state vector s = (θ, θ̇,F )

Block of 28 basis functions for each discrete action

1 constant term and 27 radial basis functions (Gaussians)

Arranged in a 3× 3× 3 grid

φ =
(

1 , e−
√

(θ/nθ−θ1)2+(θ̇/n
θ̇
−θ̇1)2+(F/nF−F1)2

2σ2 ,

· · · , e−
√

(θ/nθ−θ3)2+(θ̇/n
θ̇
−θ̇3)2+(F/nF−F3)2

2σ2

)>
,

θi ’s, θ̇i ’s and Fi ’s are in {−1, 0, +1}
nθ = π/2, nθ̇ = 2 and nF = 50
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Inverted Pendulum: Total accumulated reward
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Inverted Pendulum: 10N (left) and 20N (right) noise
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10N noise BAS mean force magnitude: 6.65N

10N noise 3-action mean force magnitude: 17.91N

20N noise BAS success rate: 99.64%

20N noise 3-action success rate: 39.49%
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Double Integrator

Control a car moving on a one-dimensional flat terrain

States: position p and velocity v

Actions: Control the acceleration a

Linear dynamics: ṗ = v and v̇ = a

Setup

Reward function: −(p2 + a2)

Constraints: |p| ≤ 1, |v | ≤ 1 and |a| ≤ 1

−50 reward for constraint violation

Discount factor γ = 0.98

Control interval dt = 500 msec
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Double Integrator

Basis Functions

Augmented state vector s = (p, v , a)

Simple polynomial approximator with 10 terms

φ = (1, p, v , a, p2a, v2a, a2, pv , pa, va, a2p, a2v)>

Jason Pazis and Michail G. Lagoudakis, ICML 2009 Binary Action Search



Introduction
Binary Action Search

Experiments
Conclusion

Inverted Pendulum
Double Integrator

Double Integrator: Total accumulated reward
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Strengths

Simplicity

Requires no tuning

Requires only 2 actions from the discrete policy

Achieves resolutions impossible to reach with discrete actions

Can be used in conjunction with any RL algorithm

Can be used in an online, offline, on-policy or off-policy setting

Weaknesses

The state space of the problem is now more complex

More samples have to be processed by the learning algorithm
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Future Work

Ongoing Research

High-dimensional action spaces

Increasing learning and execution efficiency

Future Research

Planning with BAS

Skewing functions over action range
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