Binary Action Search

for Learning Continuous-Action Control Policies

Jason Pazis and Michail G. Lagoudakis
Intelligent Systems Laboratory
Department of Electronic and Computer Engineering
Technical University of Crete
Chania, Crete, Greece

The 26th International Conference on Machine Learning
June 14-18, 2009
Montreal, Canada

Motivation: Discrete agents in a continuous world

Current Algorithms

- Can easily handle continuous state spaces
- Mostly handle discrete action spaces

Motivation: Discrete agents in a continuous world

Current Algorithms

- Can easily handle continuous state spaces
- Mostly handle discrete action spaces

Real-world problems

- Many problems have continuous control variables

Motivation: Discrete agents in a continuous world

Current Algorithms

- Can easily handle continuous state spaces
- Mostly handle discrete action spaces

Real-world problems

- Many problems have continuous control variables

The problem

- Current continuous-action approaches are often inefficient
- Can we control continuous variables using discrete decisions?

Outline

(1) Introduction
(2) Binary Action Search
(3) Experiments

4 Conclusion

Introduction

Outline

(1) Introduction

2 Binary Action Search

(3) Experiments

4 Conclusion

Markov Decision Process

Markov Decision Process

$\operatorname{MDP} \mu=(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma, \mathcal{D})$

- \mathcal{S} is the state space
- \mathcal{A} is the action space
- P is the transition model: $P\left(s^{\prime} \mid s, a\right)$
- \mathcal{R} is the reward function: $\mathcal{R}(s, a)$
- $\gamma \in(0,1]$ is the discount factor
- \mathcal{D} is the initial state distribution

Markov Property

- Transitions and rewards are independent of history

Planning

Optimization

Optimize the expected total discounted reward

$$
E_{\left.s \sim \mathcal{D} ; a_{t} \sim ? ; s_{t} \sim \mathcal{P}\left(\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0}=s\right),{ }^{2}\right)}
$$

Planning

Optimization

Optimize the expected total discounted reward

$$
E_{s \sim \mathcal{D} ; a_{t} \sim ? ; s_{t} \sim \mathcal{P}}\left(\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0}=s\right)
$$

Policy π

- A way of making decisions in all situations
- Deterministic policy: a mapping from states to actions
- There exists at least one deterministic optimal policy π^{*}

Planning

Optimization

Optimize the expected total discounted reward

$$
E_{s \sim \mathcal{D} ; a_{t} \sim ? ; s_{t} \sim \mathcal{P}}\left(\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0}=s\right)
$$

Policy π

- A way of making decisions in all situations
- Deterministic policy: a mapping from states to actions
- There exists at least one deterministic optimal policy π^{*}

Algorithms

- Value iteration, policy iteration, linear programming

Jason Pazis and Michail G. Lagoudakis, ICML 2009

Learning

Interaction

- Transition model and reward function are unknown
- Repeated interaction with an unknown process
- Sample at time $t:\left(s_{t}, a_{t}, r_{t}, s_{t+1}\right)$

Learning

Interaction

- Transition model and reward function are unknown
- Repeated interaction with an unknown process
- Sample at time $t:\left(s_{t}, a_{t}, r_{t}, s_{t+1}\right)$

Reinforcement Learning

- Prediction: learn/predict the value of a fixed policy
- Control: learn a good policy for controlling the process

Learning

Interaction

- Transition model and reward function are unknown
- Repeated interaction with an unknown process
- Sample at time $t:\left(s_{t}, a_{t}, r_{t}, s_{t+1}\right)$

Reinforcement Learning

- Prediction: learn/predict the value of a fixed policy
- Control: learn a good policy for controlling the process

Algorithms

- Prediction: DUE, TD-Learning, LSTD, ...
- Control: Q-Learning, Sarsa, LSPI, FQI, ...

The need for continuous actions in control

Benefits

- Smoothness of motion
- Power consumption
- Mechanical stresses
- Induced power line noise

The need for continuous actions in control

Benefits

- Smoothness of motion
- Power consumption
- Mechanical stresses
- Induced power line noise

Problems

- An infinite number of choices at each step
- Tabular approaches are not sufficient
- Discrete maximization is not sufficient
- Fine discretization is inefficient

Related work

Neural network approaches

- Gaskett et al., AI 1999
- Ströslin et al., ICANN 2003

Monte Carlo sampling

- Lazaric et al., NIPS 2008
- Sallans and Hinton, JMLR 2004

Single state-action approximator

- Santamaria, Sutton, Ram, Adaptive Behavior 1998

Exploitation of temporal locality

- Pazis and Lagoudakis, ADPRL 2009
- Riedmiller, ESANN 1997

Outline

(1) Introduction
(2) Binary Action Search
(3) Experiments

4 Conclusion

Binary Action Search

Choosing continuous actions

- Choosing a continuous action value in a single step is hard!
- How about breaking this hard decision into many easier ones?

Binary Action Search

Choosing continuous actions

- Choosing a continuous action value in a single step is hard!
- How about breaking this hard decision into many easier ones?

Idea

- Given a continuous action value in some state ...
- ... decide whether it's better to increase it or decrease it!

Binary Action Search

Choosing continuous actions

- Choosing a continuous action value in a single step is hard!
- How about breaking this hard decision into many easier ones?

Idea

- Given a continuous action value in some state ...
- ... decide whether it's better to increase it or decrease it!

Multi-step action choice

- Need a discrete binary policy $\pi: \mathcal{S} \times \mathcal{A} \mapsto\{$ Inc, Dec $\}$
- Perform N-step binary search over the action space
- Successively approximate the best continuous action value
- Anytime algorithm: more accurate action choice with larger N

Binary Action Search

```
Binary Action Search ( \(s, \pi, N\) )
// s
: The current state of the process
// \(\pi \quad\) : A policy making binary decisions, +1 or -1
// \(N\) : The number of resolution bits
\(a \leftarrow\left(a_{\text {max }}+a_{\text {min }}\right) / 2\)
\(\Delta \leftarrow\left(a_{\text {max }}-a_{\text {min }}\right) 2^{N-1} /\left(2^{N}-1\right) \quad / /\) Initialize \(\Delta\)
for \(i=1\) to \(N\) do
    \(\Delta \leftarrow \Delta / 2 \quad / /\) update \(\Delta\)
    \(e \leftarrow \pi(s, a)\)
    \(a \leftarrow a+e \Delta\)
end for
return a
// Initialize a
// Initialize \(\Delta\)
for \(i=1\) to \(N\) do
\[
\begin{array}{ll}
\Delta \leftarrow \Delta / 2 & \text { // update } \Delta \\
e \leftarrow \pi(s, a) & \text { // binary decision }(+1 \text { or }-1) \\
a \leftarrow a+e \Delta & \text { // update } a
\end{array}
\]
end for return \(a\)
```


Learning Binary Policies

Requirements

- continuous augmented state space $(\mathcal{S}, \mathcal{A})$
- discrete binary action space $\{$ Increase $(+1)$, Decrease $(-1)\}$
- most reinforcement learning algorithms can be used

Learning Binary Policies

Requirements

- continuous augmented state space $(\mathcal{S}, \mathcal{A})$
- discrete binary action space $\{$ Increase $(+1)$, Decrease $(-1)\}$
- most reinforcement learning algorithms can be used

Learning Data

- need to get sample transitions for the transformed MDP
- for each actual transition sample with a continuous action ...
- ... generate N transition samples with discrete actions

A Simple Example

A simplified domain

- Continuous action range [1.0, 8.0]
- $N=3$ (3-bit resolution)

A Simple Example

A simplified domain

- Continuous action range [1.0, 8.0]
- $N=3$ (3-bit resolution)

Actual sample

A Simple Example

A simplified domain

- Continuous action range [1.0, 8.0]
- $N=3$ (3-bit resolution)

Actual sample

Derived samples

Properties

Optimality

- Searching for the single best action - no local optima

Properties

Optimality

- Searching for the single best action - no local optima

Integration

- BAS can be combined with most existing RL algorithms
- The RL algorithm needs to support continuous state spaces
- Decisions over an augmented state space: (\mathcal{S}, A)

Properties

Optimality

- Searching for the single best action - no local optima

Integration

- BAS can be combined with most existing RL algorithms
- The RL algorithm needs to support continuous state spaces
- Decisions over an augmented state space: (\mathcal{S}, A)

Efficiency

- Needs only a binary search policy
- Scales logarithmically with the resolution

Outline

(1) Introduction

(2) Binary Action Search

(3) Experiments

4 Conclusion

Inverted Pendulum

Balancing a pendulum at the upright position

- States: vertical angle θ and angular velocity $\dot{\theta}$
- Discrete actions: three actions [-50 N, 0 N, $+50 \mathrm{~N}]$
- Continuous actions: 2^{8} equally spaced in $[-50 \mathrm{~N},+50 \mathrm{~N}]$
- Uniform noise in $[-10 \mathrm{~N},+10 \mathrm{~N}]$ is added to all actions

っの

Inverted Pendulum

Learning Setup

- Training samples collected in advance from "random episodes"
- Starting in a randomly perturbed state near equilibrium
- Following a policy that made random decisions

Parameters

- Reward function: $-\left((2 \theta / \pi)^{2}+(\dot{\theta})^{2}+(F / 50)^{2}\right)$
- $|\theta|>\pi / 2$ signals the end of episode and a reward of -1000
- Discount factor $\gamma=0.95$
- Control interval $d t=100 \mathrm{msec}$

Basis Functions

- Augmented state vector $s=(\theta, \dot{\theta}, F)$
- Block of 28 basis functions for each discrete action
- 1 constant term and 27 radial basis functions (Gaussians)
- Arranged in a $3 \times 3 \times 3$ grid

$$
\begin{aligned}
\phi= & \left(1 \quad, \quad e^{-\frac{\sqrt{\left(\theta / n_{\theta}-\theta_{1}\right)^{2}+\left(\dot{\theta} / n_{\dot{\theta}}-\dot{\theta}_{1}\right)^{2}+\left(F / n_{F}-F_{1}\right)^{2}}}{2 \sigma^{2}}}\right. \\
& \left.\cdots \quad, \quad e^{-\frac{\sqrt{\left(\theta / n_{\theta}-\theta_{3}\right)^{2}+\left(\dot{\theta} / n_{\dot{\theta}}-\dot{\theta}_{3}\right)^{2}+\left(F / n_{F}-F_{3}\right)^{2}}}{2 \sigma^{2}}}\right)^{\top},
\end{aligned}
$$

- θ_{i} 's, $\dot{\theta}_{i}$'s and F_{i} 's are in $\{-1,0,+1\}$
- $n_{\theta}=\pi / 2, n_{\dot{\theta}}=2$ and $n_{F}=50$

Inverted Pendulum: Total accumulated reward

Inverted Pendulum: 10 N (left) and 20 N (right) noise

- 10 N noise BAS mean force magnitude: 6.65 N
- 10 N noise 3 -action mean force magnitude: 17.91 N
- 20 N noise BAS success rate: 99.64%
- 20 N noise 3 -action success rate: 39.49%

Double Integrator

Control a car moving on a one-dimensional flat terrain

- States: position p and velocity v
- Actions: Control the acceleration a
- Linear dynamics: $\dot{p}=v$ and $\dot{v}=a$

Setup

- Reward function: $-\left(p^{2}+a^{2}\right)$
- Constraints: $|p| \leq 1,|v| \leq 1$ and $|a| \leq 1$
- -50 reward for constraint violation
- Discount factor $\gamma=0.98$
- Control interval $d t=500 \mathrm{msec}$

Double Integrator

Basis Functions

- Augmented state vector $s=(p, v, a)$
- Simple polynomial approximator with 10 terms

$$
\phi=\left(1, p, v, a, p^{2} a, v^{2} a, a^{2}, p v, p a, v a, a^{2} p, a^{2} v\right)^{\top}
$$

Double Integrator: Total accumulated reward

Outline

(1) Introduction

(2) Binary Action Search
(3) Experiments

4 Conclusion

Strengths

- Simplicity
- Requires no tuning
- Requires only 2 actions from the discrete policy
- Achieves resolutions impossible to reach with discrete actions
- Can be used in conjunction with any RL algorithm
- Can be used in an online, offline, on-policy or off-policy setting

Strengths

- Simplicity
- Requires no tuning
- Requires only 2 actions from the discrete policy
- Achieves resolutions impossible to reach with discrete actions
- Can be used in conjunction with any RL algorithm
- Can be used in an online, offline, on-policy or off-policy setting

Weaknesses

- The state space of the problem is now more complex
- More samples have to be processed by the learning algorithm

Future Work

Ongoing Research

- High-dimensional action spaces
- Increasing learning and execution efficiency

Future Research

- Planning with BAS
- Skewing functions over action range

Acknowledgments

- Thank you for your attention!

