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Blackbox Optimization

Goal: Maximizing some unknown ��tness�function f (z), z 2 Rd .

−4
−2

0
2

4

−3−2−10123

0

0.5

1

1.5

2

2.5

3

Challenge:

Complex �tness landscapes.

Local optimas, saddle points, etc.
Highly non-isotropic (ill-shaped)
local behavior.
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Correlation between all dimensions.

Expensive �tness evaluations.

High dimensionality, d up to hundreds.

Powerful methods are required to solve such problems.
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Stochastic Search Algorithms

Basic idea: Optimization by using population of samples.

Typical �ow of stochastic search
algorithm:

Initialization

Sampling from 
Search 

Distribution

Evaluating fitnesses 
of samples

Updating 
Search 

Distribution
loop
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Stochastic Gradient Ascent

Let p (�jθ) be the search distribution. We want to update θ towards better
expected �tness:

J (θ) = E [f jθ] =
Z
f (z) p (zjθ) dz.

The most straight forward way is by gradient ascent:

θ  θ + αOθJ (θ) .

We can compute the �vanilla�gradient as

OθJ (θ) =
Z
f (z)Oθp (zjθ) dz

=
Z
f (z)

p (zjθ)
p (zjθ)Oθp (zjθ) dz (log-likelihood trick)

= E [f (z)Oθ log p (zjθ) jθ] .
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Stochastic Gradient Ascent

Using the Monte-Carlo estimation

OθJ (θ) = E [f (z)Oθ log p (zjθ) jθ]

' 1
n

∑n
i=1 f (zi )Oθ log p (zi jθ) =

1
n
Gf,

with

G = [Oθ log p (z1jθ) . . .Oθ log p (zn jθ)] ,
f = [f (z1) . . . f (zn)]

> .

Now the problem is to compute Oθ log p (zjθ). A closed form derivation
can be obtained if p (zjθ) is a Gaussian distribution.
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The Gaussian Search Distribution

The Gaussian search distribution is given by

p (zjθ) = N (zjx,C) .

We use the parameter set θ = hx,Ai, with A being the Cholesky
decomposition of C, i.e., A is an upper triangular matrix (UTM) and
C = A>A.

No redundancy in θ since C is symmetric.

Oθ log p (zjθ) can be computed in closed form:

Ox log p (zjθ) = C� (z� x)
OA log p (zjθ) = A�> (z� x) (z� x)> C� � diag

�
A�
�

OsθJ (θ) can be computed from Oθ log p (z1jθ) . . .Oθ log p (z1jθ).
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Stochastic Gradient Ascent

θ  θ + αOsθJ (θ) = θ +
α

n
Gf
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Novel Ideas in eNES

1 Use the Natural Gradient instead of the vanilla gradient.

2 The natural gradient is computed in an Exact and E¢ cient way.

3 Use Importance Mixing for reusing previously evaluated samples.

4 Introducing Optimal Fitness Baseline to reduce the variance of
gradient estimation.

Yi Sun, et al. (IDSIA) E¢ cient Natural Evolution Strategies 17/06/2009 8 / 29



Novel Ideas in eNES

1 Use the Natural Gradient instead of the vanilla gradient.

2 The natural gradient is computed in an Exact and E¢ cient way.

3 Use Importance Mixing for reusing previously evaluated samples.

4 Introducing Optimal Fitness Baseline to reduce the variance of
gradient estimation.

Yi Sun, et al. (IDSIA) E¢ cient Natural Evolution Strategies 17/06/2009 8 / 29



Novel Ideas in eNES

1 Use the Natural Gradient instead of the vanilla gradient.

2 The natural gradient is computed in an Exact and E¢ cient way.

3 Use Importance Mixing for reusing previously evaluated samples.

4 Introducing Optimal Fitness Baseline to reduce the variance of
gradient estimation.

Yi Sun, et al. (IDSIA) E¢ cient Natural Evolution Strategies 17/06/2009 8 / 29



Novel Ideas in eNES

1 Use the Natural Gradient instead of the vanilla gradient.

2 The natural gradient is computed in an Exact and E¢ cient way.

3 Use Importance Mixing for reusing previously evaluated samples.

4 Introducing Optimal Fitness Baseline to reduce the variance of
gradient estimation.

Yi Sun, et al. (IDSIA) E¢ cient Natural Evolution Strategies 17/06/2009 8 / 29



Novel Ideas in eNES

1 Use the Natural Gradient instead of the vanilla gradient.

2 The natural gradient is computed in an Exact and E¢ cient way.

3 Use Importance Mixing for reusing previously evaluated samples.

4 Introducing Optimal Fitness Baseline to reduce the variance of
gradient estimation.

Yi Sun, et al. (IDSIA) E¢ cient Natural Evolution Strategies 17/06/2009 8 / 29



Novel Ideas in eNES

1 Use the Natural Gradient instead of the vanilla gradient.

2 The natural gradient is computed in an Exact and E¢ cient way.

3 Use Importance Mixing for reusing previously evaluated samples.

4 Introducing Optimal Fitness Baseline to reduce the variance of
gradient estimation.

Yi Sun, et al. (IDSIA) E¢ cient Natural Evolution Strategies 17/06/2009 9 / 29



Why Natural Gradient?

Vanilla gradient doesn�t work:

Over-aggressive steps on ridges.
Too small steps on plateaus.
Slow or premature convergence,
non-robust performance.

Basic idea of natural gradient

Steepest ascent direction when
considering correlations between
elements in θ.
Re-weight gradient elements
according to their uncertainties, resp.
Isotropic convergence on ill-shaped
surface.
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Formulation of Natural Gradient

Assume the distance between two adjacent distributions p (�jθ) and
p (�jθ + δθ) is de�ned by their KL divergence. The natural gradient
ÕθJ (θ) is given by the necessary condition

FÕθJ (θ) = OθJ (θ) .

F is the Fisher information matrix (FIM) of θ: (Intuitively, the
normalized covariance of the gradient.)

F = E
h
(Oθ log p (zjθ)) (Oθ log p (zjθ))>

i
.

F may not be invertible.
If F is invertable, we can compute the (estimated) natural gradient as

ÕθJ (θ) = F�OθJ (θ) , ÕsθJ (θ) = F�OsθJ (θ) .
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ÕθJ (θ) is given by the necessary condition
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Novel Ideas in eNES

1 Use the Natural Gradient instead of the vanilla gradient.

2 The natural gradient is computed in an Exact and E¢ cient way.

3 Use Importance Mixing for reusing previously evaluated samples.

4 Introducing Optimal Fitness Baseline to reduce the variance of
gradient estimation.
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Property of FIM in the Gaussian Case

Let θ = hx,Ai. Our lucky �ndings:

F is indeed invertible.
F is a block diagonal matrix

F =

26664
C�

F1
. . .

Fd

37775 .

C� is the FIM for x.
Fk is the FIM for (n� k + 1 non-zero elements in) the k-th row of A.
The FIM suggest a natural grouping of elements in θ. Groups are
orthogonal with each other.
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Property of FIM in the Gaussian Case

Fk has the special form

Fk =
�
a�2k ,k 0
0 0

�
+Dk ,

with Dk being the n� k + 1 submatrix at the lower right corner of
C�.

This special form permits a iterative algorithm to compute F�k from
F�k+1 with complexity O

�
k2
�
.

Yi Sun, et al. (IDSIA) E¢ cient Natural Evolution Strategies 17/06/2009 14 / 29



Property of FIM in the Gaussian Case

Fk has the special form

Fk =
�
a�2k ,k 0
0 0

�
+Dk ,

with Dk being the n� k + 1 submatrix at the lower right corner of
C�.

This special form permits a iterative algorithm to compute F�k from
F�k+1 with complexity O

�
k2
�
.

Yi Sun, et al. (IDSIA) E¢ cient Natural Evolution Strategies 17/06/2009 14 / 29



E¢ cient Inverse of FIM

The computation of natural gradient requires the inverse of F.

Naively, F is a matrix of size O
�
d2
�
, so computing F� requires

O
�
d6
�
.

We already �nd that F is block diagonal, so computing F� requires
O
�
d4
�
.

We can do better! Use the special form of each sub-block, the
complexity is reduced to O

�
d3
�
.

The estimated natural gradient is then computed as

OsθJ (θ) =
1
n
F�Gf.

with complexity O
�
d3
�
.
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Novel Ideas in eNES

1 Use the Natural Gradient instead of the vanilla gradient.

2 The natural gradient is computed in an Exact and E¢ cient way.

3 Use Importance Mixing for reusing previously evaluated samples.

4 Introducing Optimal Fitness Baseline to reduce the variance of
gradient estimation.
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Importance Mixing

At each cycle, we need to evaluate n
new samples.

It is common that the updated θ(t) is
close to θ(t�1).

Problem: Redundant �tness
evaluations in overlapping high density
area.

Importance Mixing: Generate samples
in less explored areas, while keeping
the updated batch conformed to the
new search distribution.

Reusing samples: fewer �tness evaluations.
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Importance Mixing

Formally, importance mixing is carried out by two rejection samplings.

Forward pass: For each sample z from
the previous batch, accept with
probability

min

8<:1, p
�
z jθ(t)

�
p
�
z jθ(t�1)

�
9=; .

Backward pass: Accept newly
generated sample z with probability

max

8<:0, 1� p
�
z jθ(t�1)

�
p
�
z jθ(t)

�
9=;

until batch size reached.
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Novel Ideas in eNES

1 Use the Natural Gradient instead of the vanilla gradient.

2 The natural gradient is computed in an Exact and E¢ cient way.

3 Use Importance Mixing for reusing previously evaluated samples.

4 Introducing Optimal Fitness Baseline to reduce the variance of
gradient estimation.
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Optimal Fitness Baseline

A typical problem with the Monte-Carlo gradient estimation is that the
variance is too big. The �tness baseline is introduced to reduce the
variance.

OθJ = Oθ

Z
f (z) p (zjθ) dz�Oθ

Z
bp (zjθ) dz| {z }
=0

= Oθ

Z
[f (z)� b] p (zjθ) dz,

b is called the �tness baseline.

Adding the baseline b won�t a¤ect the expectation of OθJ.
But it a¤ects the variance of the estimation: For natural gradient

V [ÕθJ (θ)] ∝ b2E
h
u>u

i
� 2bE

h
u>v

i
+ const

with
u = F�Oθ log p (zjθ) , v = f (z) u.
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Optimal Fitness Baseline

V [ÕθJ (θ)] is of quadratic form, we can minimize it. The optimal
�tness baseline is given by

b� =
E
�
u>v

�
E [u>u]

' ∑n
i=1 u>i vi

∑n
i=1 u>i ui

.

The natural gradient is then estimated by

ÕsθJ (θ) =
1
n
F�G (f � b�) .

Better: Di¤erent baselines bj for di¤erent (groups of) parameter θj ,
further reducing the variance.

The block diagonal structure of F suggests using a block �tness
baseline, where di¤erent baseline values are computed for orthogonal
groups of parameters in θ.
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Putting Things Together

Update:
θ  θ + αÕsθJ (θ)

Compute optimal
baseline b� and ÕsθJ (θ)

Initialization

loop

Update population using
importance mixing

Evaluate newly
generated samples
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Empirical Results - Standard Blackbox Benchmarks

number of evaluations

-f
it
n
e
s
s

Unimodal-50
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DiffPow
Ellipsoid

ParabR
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SharpR

Sphere
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Empirical Results - Importance Mixing and Optimal
Baseline

Percentage of runs that prematurely converged, while varying the type of
�tness baseline used.

Baseline premature
convergence

None 52%
Uniform 50%
Block 0%

Importance Mixing reduces the number of �tness evaluations by a factor of
3 � 4.
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Empirical Results - Multimodal
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Empirical Results - Double Pole Balancing

2

F

β

β

1

x

Non-Markovian double pole balancing, average numbers of evaluations.

Method SANE ESP NEAT CMA CoSyNE FEM NES

Eval. 262, 700 7, 374 6, 929 3, 521 1, 249 2, 099 1, 753
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Summary

We derived a clear blackbox optimization algorithm from �rst
principles.

Derivation of exact Fisher information matrix.

E¢ cient computation of the FIM inverse.

Importance mixing reduces the number of �tness evaluations.

Optimal �tness baselines reduces the variance of gradient estimation.

Competitive performance on standard benchmarks, including
non-Markovian double pole balancing tasks.
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Try it Out?

http://www.pybrain.org
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Thank you!
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