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Goals
• Reinforcement learning has revolutionized our 

understanding of learning in the brain in the last 
20 years

• Not many ML researchers know this!
1. Take pride

2. Ask: what can neuroscience do for me?

• Why are you here?

• To learn about learning in animals and humans

• To find out the latest about how the brain does RL

• To find out how understanding learning in the brain can 
help RL research

2



If you are here for other 
reasons...

3

learn what is RL 
and how to do it

read email

smirk at the 
shoddy state of 
neuroscience

take a well-
needed nap

learn about the 
brain in general
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what do we know about the brain?
• Anatomy: we know a lot about what is where and (more or less) 

which area is connected to which (But unfortunately names follow 
structure and not function; be careful of generalizations, e.g. neurons in motor 
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• Networks of neurons: we have some ideas but in general are still in 
the dark

• Learning: we know a lot of facts (LTP, LTD, STDP) (not clear which, if any 
are relevant; relationship between synaptic learning rules and computation 
essentially unknown)

• Function: we have pretty coarse grain knowledge of what different 
brain areas do (mainly sensory and motor; unclear about higher cognitive 
areas; much emphasis on representation rather than computation)



Summary so far...

• We have a lot of facts about the brain 

• But.. we still don’t understand that much 
about how it works

• (can ML help??)

11
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brain behavior

figure out how the brain generates behavior

what do neuroscientists do all day?
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do we need so many neuroscientists 
for one simple question?

• Old idea: 
structure → function

• The brain is an extremely 
complex (and messy) 
dynamic biological system

• 1011 neurons 
communicating through 
1014 synapses

• we don’t stand a chance...
14Credits: Peter Latham
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• (relatively) New Idea:

• The brain is a computing device

• Computational models can help us talk about 
functions of the brain in a precise way

• Abstract and formal theory can help us 
organize and interpret (concrete) data 
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David Marr (1945-1980) proposed three 
levels of analysis: 

1. the problem (Computational Level)

2. the strategy (Algorithmic Level)

3. how its actually done by networks of neurons 
(Implementational Level)

a framework for 
computational neuroscience
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the problem we all face in our daily life

optimal decision making 
(maximize reward, minimize punishment)

17

Why is this hard?
• Reward/punishment may be delayed
• Outcomes may depend on a series of actions
⇒ “credit assignment problem” (Sutton, 1978)
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in comes reinforcement 
learning

• The problem: optimal decision making 
(maximize reward, minimize punishment)

• An algorithm: reinforcement learning

• Neural implementation: basal ganglia, 
dopamine

18



Summary so far...

• Idea: study the brain as a computing device 

• Rather than look at what networks of 
neurons in the brain represent, look at 
what they compute 

• What do animal’s brains compute?

19



Animal Conditioning and RL

• two basic types of animal conditioning 
(animal learning)

• how do these relate to RL?

20



Ivan Pavlov
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how is this related to RL?

model-free learning of values of stimuli through experience; 
responding conditioned on (predictive) value of stimulus

23Dayan et al. (2006) - “The Misbehavior of Value and the Discipline of the Will”



The idea: error-driven learning 
Change in value is proportional to the difference between 
actual and predicted outcome

Rescorla & Wagner (1972)

Two assumptions/hypotheses: 
(1) learning is driven by error (formalize notion of surprise)
(2) summations of predictors is linear

24

∆V (Si) = η[R−
∑

j∈trial

V (Sj)]
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How do we know that animals use an 
error-correcting learning rule?

25

+

Phase 1 Phase II

Blocking
(NB. Also in humans)
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2. Instrumental conditioning: 
adding control
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• Background: Darwin, attempts to 
show that animals are intelligent

• Thorndike (age 23): submitted 
PhD thesis on “Animal intelligence: 
an experimental study of the 
associative processes in animals” 

• Tested hungry cats in “puzzle 
boxes”

• Definition for learning: time to 
escape

• Gradual learning curves, did not 
look like ‘insight’ but rather trial 
and error

Edward 
Thorndike

(law of effect)

2. Instrumental conditioning: 
adding control

26



Example: Free operant 
conditioning (Skinner)

27



Example: Free operant 
conditioning (Skinner)

27



how is this related to RL?

animals can learn an arbitrary policy to obtain 
rewards (and avoid punishments)

28



Summary so far...

• The world presents animals/humans with a 
huge reinforcement learning problem (or 
many such small problems)

• Optimal learning and behavior depend on 
prediction and control 

• How can the brain realize these? 
Can RL help us understand the 
brain’s computations?

29
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• Working memory
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Parkinson’s Disease
→ Motor control / initiation?

Drug addiction, gambling, 
Natural rewards

→ Reward pathway?
→ Learning?

Also involved in:

• Working memory
• Novel situations
• ADHD
• Schizophrenia
• …

Dorsal Striatum (Caudate, Putamen) 

Ventral Tegmental Area 
Substantia Nigra

Nucleus Accumbens
(ventral striatum) 

Prefrontal Cortex

31

What is dopamine and why do 
we care about it?



role of dopamine: many hypotheses

• Anhedonia hypothesis

• Prediction error hypothesis

• Salience/attention

• (Uncertainty)

• Incentive salience

• Cost/benefit computation 

• Energizing/motivating behavior

32
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where does dopamine project to?

main target: basal ganglia
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dopamine and synaptic plasticity

Wickens et al, 1996

• prediction errors are for learning…

• cortico-striatal synapses show 
dopamine-dependent plasticity

• three-factor learning rule: need 
presynaptic+postsynaptic+dopamine
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Summary so far...

Conditioning can be viewed as prediction learning

• The problem: prediction of future reward
• The algorithm: temporal difference learning
• Neural implementation: dopamine dependent learning 

in corticostriatal synapses in the basal ganglia

⇒ Precise (normative!) theory for generation of dopamine 
firing patterns

⇒ A computational model of learning allows us to look in 
the brain for “hidden variables” postulated by the model



Outline

• The brain coarse-grain

• Learning and decision making in animals and humans: 
what does RL have to do with it?

• A success story: Dopamine and prediction errors

• Actor/Critic architecture in basal ganglia

• SARSA vs Q-learning: can the brain teach us about ML?

• Model free and model based RL in the brain

• Average reward RL & tonic dopamine

• Risk sensitivity and RL in the brain

• Open challenges and future directions

42



3 model-free learning algorithms
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Actor/Critic

Q learning

SARSA
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resonance imaging (fMRI)

• measure BOLD (“blood oxygenation 
level dependent”) signal

• oxygenated vs de-oxygenated 
hemoglobin have different magnetic 
properties

• detected by big superconducting 
magnet

Idea:

• Brain is functionally modular

• Neural activity uses energy & oxygen

• Measure brain usage, not structure

• Spatial resolution: ~3mm 3D “voxels”

• temporal resolution: 5-10 seconds
45
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Back to Actor/Critic: 
Evidence from fMRI

47

• cond 1: instrumental (choose stimuli) - show preference for 
high probability stimulus in rewarding but not neutral trials 

• cond 2: Pavlovian - only indicate the side the ‘computer’ has 
selected (RTs as measure of learning)

• why was the experiment designed this way (hint: think of 
prediction errors)

O’Doherty et al. 2004

rewarding

60% 30%

neutral

30% 60%
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Pavlovian Instrumental Conjunction
ventral striatum: correlated with prediction error in both conditions
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Pavlovian Instrumental Conjunction

Dorsal striatum: prediction error only in instrumental task

ventral striatum: correlated with prediction error in both conditions

Back to Actor/Critic: 
Evidence from fMRI

O’Doherty et al. 2004



do prediction errors really 
influence learning?

49Schonberg et al. 2007



do prediction errors really 
influence learning?

50Schonberg et al. 2007

Le
ar

ne
rs

N
on

-L
ea

rn
er

s



Summary so far...

• Some evidence for an Actor/Critic architecture in the 
brain

• Links predictions (Critic) to control (Actor) in very 
specific way; assumes no Q values

• (Not at all conclusive evidence)

51



Outline

• The brain coarse-grain

• Learning and decision making in animals and humans: 
what does RL have to do with it?

• A success story: Dopamine and prediction errors

• Actor/Critic architecture in basal ganglia

• SARSA vs Q-learning: can the brain teach us about ML?

• Model free and model based RL in the brain

• Average reward RL & tonic dopamine

• Risk sensitivity and RL in the brain

• Open challenges and future directions
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Morris et al. 2005
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57

but… another study suggests 
otherwise

Differences from
Morris et al. (2005):
• rats not monkeys
• VTA not SNc
• amount of training
• task (representation 

of stimuli?)

(notice the messy signal... 
due to measurement or is it 
that way in the brain?)

Roesch et al. 2007



Summary so far...

• SARSA or Q-learning? The jury is still out

• What needs to be done: more experiments 
recording from dopamine in telltale tasks

• The brain (dopamine) can inform RL: how 
does it learn in real time, with real noise, in 
real problems?
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Outline

• The brain coarse-grain

• Learning and decision making in animals and humans: 
what does RL have to do with it?

• A success story: Dopamine and prediction errors

• Actor/Critic architecture in basal ganglia

• SARSA vs Q-learning: can the brain teach us about ML?

• Model free and model based RL in the brain

• Average reward RL & tonic dopamine

• Risk sensitivity and RL in the brain

• Open challenges and future directions
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do animals only learn action policies?

60

training: test:

Tolman et al (1946)

result:

Even the humble rat can can learn spatial structure, and 
use it to plan flexibly
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? ?
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(no rewards)

2 – Pairing with illness: 2 – Motivational shift:

Hungry Sated

will animals 
work for food 
they don’t 
want?
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 in daily life: actions become automatic with repetition
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 animals with lesions to 
DLS never develop habits 
despite extensive training

 also treatments depleting 
dopamine in DLS

 also inactivations of infra-
limbic PFC after training

devaluation: results from lesions I

63Yin et al (2004), Coutureau & Killcross (2003)

dorsolateral
striatum lesion

control
(sham lesion)

overtrained rats



64Yin, Ostlund, Knowlton & Balleine (2005)

devaluation: results from lesions II
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lesions of the pDMS cause animals to leverpress 
habitually even with only moderate training
(also.. pre-limbic PFC, dorsomedial thalamus)

64Yin, Ostlund, Knowlton & Balleine (2005)

devaluation: results from lesions II



what does all this mean?

65



what does all this mean?

65

• The same action (leverpressing) can arise from two 
psychologically dissociable pathways



what does all this mean?

65

• The same action (leverpressing) can arise from two 
psychologically dissociable pathways

1. moderately trained behavior is “goal-directed”: dependent on 
outcome representation



what does all this mean?

65

• The same action (leverpressing) can arise from two 
psychologically dissociable pathways

1. moderately trained behavior is “goal-directed”: dependent on 
outcome representation

2. overtrained behavior is “habitual”: apparently not dependent 
on outcome representation



what does all this mean?

65

• The same action (leverpressing) can arise from two 
psychologically dissociable pathways

1. moderately trained behavior is “goal-directed”: dependent on 
outcome representation

2. overtrained behavior is “habitual”: apparently not dependent 
on outcome representation

• Lesions suggest two parallel systems; the intact one 
can apparently support behavior at any stage



what does all this mean?

65

• The same action (leverpressing) can arise from two 
psychologically dissociable pathways

1. moderately trained behavior is “goal-directed”: dependent on 
outcome representation

2. overtrained behavior is “habitual”: apparently not dependent 
on outcome representation

• Lesions suggest two parallel systems; the intact one 
can apparently support behavior at any stage

• Can RL help us make sense of this mess?
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Q(S0,R) = 2

Q(S1,L) = 4

Q(S1,R) = 0

Q(S2,L) = 1

Q(S2,R) = 2

Stored:
• learn values through prediction errors

• choosing actions is easy so behavior is 
quick, reflexive

• but needs a lot of experience to learn

• and inflexible, need relearning to adapt to 
any change (habitual)

Daw, Niv, Dayan (2005)
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• Why should the brain use two different strategies/
controllers in parallel?

• If it uses two: how can it arbitrate between the two when 
they disagree (new decision making problem…)

Daw, Niv, Dayan (2005)
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1. each system is best in different situations (use each one when it is most 
suitable/most accurate)

• goal-directed (forward search) - good with limited training, close to the 
reward (don’t have to search ahead too far)

• habitual (cache) - good after much experience, distance from reward 
not so important

2. arbitration: trust the system that is more confident in its 
recommendation

• use Bayesian RL (explore/exploit in unknown 
MDP; POMDP)

• different sources of uncertainty in the 
two systems

estimated
action
value

cache model

Daw, Niv, Dayan (2005)



Summary so far...

• animal conditioned behavior is not a simple 
unitary phenomenon: the same response can 
result from different neural and computational 
origins

• different neural mechanisms work in parallel to 
support behavior: cooperation and competition

• RL provides clues as to why this should be so, 
and what each system does
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Outline
• The brain coarse-grain

• Learning and decision making in animals and humans: 
what does RL have to do with it?

• A success story: Dopamine and prediction errors

• Actor/Critic architecture in basal ganglia

• SARSA vs Q-learning: can the brain teach us about ML?

• Model free and model based RL in the brain

• Average reward RL & tonic dopamine (skipped for lack 
of time)

• Risk sensitivity and RL in the brain *NEW*

• Open challenges and future directions

71
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a question:

72

sure $20 risky $40/$0

or

Will the neural value of a sure 20¢ be the same 
as that of a 50% chance risky 40¢ ?

1. Decision making is sensitive to risk

2. RL (expected) values ignore risk

3. BOLD signals in nucleus accumbens correlate with 

prediction errors (can infer value of options from these)

Niv, Edlund, Dayan, O’Doherty (not yet published)



same neural 
values

different neural 
values

73

sure 20¢ vs. risky 40¢/0¢



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

“decision value”  
= E(r) + αV(r)

Kuhnen & Knutson(2005) 
Preuschoff, Bossaerts & Quartz (2006)

sure 20¢ vs. risky 40¢/0¢



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20

20



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20

20

20



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20

20

20

B



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20 40

20

20

B



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20 40

20

20 30

B



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20 40

20 20

20 30

B



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20 40

20 20

20 30

B B



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20 40 0

20 20

20 30

B B



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20 40 0

20 20

20 30 15

B B



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20 40 0

20 20 20

20 30 15

B B



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20 40 0

20 20 20

20 30 15

B B A



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20 40 0 20

20 20 20

20 30 15

B B A



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20 40 0 20

20 20 20 20

20 30 15

B B A



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20 40 0 20

20 20 20 20

20 30 15 15

B B A



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20 40 0 20

20 20 20 20

20 30 15 15

B B A A



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20 40 0 20

20 20 20 20

20 30 15 15

B B A

20

20

15

A



same neural 
values

different neural 
values

73

risk-sensitive 
decisions due to 
sampling biases

A B

$

A

B

March (1995), Niv et al. (2002), Hertwig et al (2004)

risk-sensitive 
decisions due to other 

mechanism that 
tracks risk

sure 20¢ vs. risky 40¢/0¢

A

20 40 0 20

20 20 20 20

20 30 15 15

B B A

…20

20

15

A



74

same neural 
values

sure 20¢ vs. risky 40¢/0¢

different neural 
values



74

same neural 
values

sure 20¢ vs. risky 40¢/0¢

different neural 
values

different values due to 
nonlinear utility function



74

same neural 
values

sure 20¢ vs. risky 40¢/0¢

different neural 
values

different values due to 
nonlinear utility function

20 40 60 ¢

su
bj

ec
tiv

e 
ut

ili
ty



74

same neural 
values

sure 20¢ vs. risky 40¢/0¢

different neural 
values

different values due to 
nonlinear utility function

20 40 60 ¢

su
bj

ec
tiv

e 
ut

ili
ty



74

same neural 
values

sure 20¢ vs. risky 40¢/0¢

different neural 
values

different values due to 
nonlinear utility function



74

same neural 
values

sure 20¢ vs. risky 40¢/0¢

different neural 
values

different values due to 
nonlinear utility function

different values due to risk-
sensitive learning process



74

same neural 
values

sure 20¢ vs. risky 40¢/0¢

different neural 
values

different values due to 
nonlinear utility function

different values due to risk-
sensitive learning process

‘win’
40

‘lose’
0

B

Mihatsch & Neuneier (2002)



74

same neural 
values

sure 20¢ vs. risky 40¢/0¢

different neural 
values

different values due to 
nonlinear utility function

different values due to risk-
sensitive learning process

V = 20

‘win’
40

‘lose’
0

B

Mihatsch & Neuneier (2002)



74

same neural 
values

sure 20¢ vs. risky 40¢/0¢

different neural 
values

different values due to 
nonlinear utility function

different values due to risk-
sensitive learning process

V = 20

‘win’
40

‘lose’
0

B

Mihatsch & Neuneier (2002)



74

same neural 
values

sure 20¢ vs. risky 40¢/0¢

different neural 
values

different values due to 
nonlinear utility function

different values due to risk-
sensitive learning process

V = 20

‘win’
40

‘lose’
0

B

Mihatsch & Neuneier (2002)



74

same neural 
values

sure 20¢ vs. risky 40¢/0¢

different neural 
values

different values due to 
nonlinear utility function

different values due to risk-
sensitive learning process

V = 20

‘win’
40

‘lose’
0

B

Mihatsch & Neuneier (2002)



74

same neural 
values

sure 20¢ vs. risky 40¢/0¢

different neural 
values

different values due to 
nonlinear utility function

different values due to risk-
sensitive learning process

V = 20

‘win’
40

‘lose’
0

B

Mihatsch & Neuneier (2002)



74

same neural 
values

sure 20¢ vs. risky 40¢/0¢

different neural 
values

different values due to 
nonlinear utility function

different values due to risk-
sensitive learning process

V = 20

‘win’
40

‘lose’
0

B

Mihatsch & Neuneier (2002)



74

same neural 
values

sure 20¢ vs. risky 40¢/0¢

different neural 
values

different values due to 
nonlinear utility function

different values due to risk-
sensitive learning process

V = 20

‘win’
40

‘lose’
0

B

Mihatsch & Neuneier (2002)



74

same neural 
values

sure 20¢ vs. risky 40¢/0¢

different neural 
values

different values due to 
nonlinear utility function

different values due to risk-
sensitive learning process

V = 20

‘win’
40

‘lose’
0

B

Mihatsch & Neuneier (2002)



75

two systems: 
expectation, risk 

expected values +  
sampling biases

V(20) = V(40/0)

same neural 
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sure 20¢ vs. risky 40¢/0¢

different neural 
values

expected values + 
nonlinear utility 

risk-sensitive 
value learning

V(20) ≠ V(40/0)



Sorry…

• This is of yet unpublished material so I 
hesitate to put the rest of this study online

• If you would like a copy of these slides or of 
the paper, feel free to email me at 
yael@princeton.edu
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Outline

• The brain coarse-grain

• Learning and decision making in animals and humans: 
what does RL have to do with it?

• A success story: Dopamine and prediction errors

• Actor/Critic architecture in basal ganglia
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Summary: What have we 
learned here?

• RL has revolutionized how we think about learning 
in the brain

• Theoretical, but also practical (even clinical?) 
implications for neuroscience

• Neuroscience continues to be a “consumer” of 
ML theory/algorithms 

• This does not have to be a one-way street: 
humans solve some problems so well that it is 
silly not to use human learning as an inspiration 
for new RL methods
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THANK YOU!
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interested in reading more? 
some recent reviews of neural RL

• Y Niv (2009) ‐ Reinforcement learning in the brain ‐ The Journal of Mathematical 
Psychology

• P Dayan & Y Niv (2008) ‐ Reinforcement learning and the brain: The Good, The Bad and The 
Ugly ‐ Current Opinion in Neurobiology, 18(2), 185‐196

• MM Botvinick, Y Niv & A Barto (2008) - Hierarchically organized behavior and its neural 
foundations: A reinforcement learning perspective - Cognition (online prepublication)

• K Doya (2008) - Modulators of decision making - Nature Neuroscience 11,410-416

• MFS Rushworth & TEJ Behrens (2008) - Choice, uncertainty and value in prefrontal and 
cingulate cortex - Nature Neuroscience 11, 389-397

• A Johnson, MA van der Meer & AD Redish (2007) - Integrating hippocampus and striatum 
in decision-making - Current Opinion in Neurobiology, 17, 692-697

• JP O’Doherty, A Hampton & H Kim (2007) - Model-based fMRI and its application to reward 
learning and decision making - Annals of the New York Academy of  Science, 1104, 35-53

• ND Daw & K Doya (2006) - The computational neurobiology of learning  and reward - 
Current Opinion in Neurobiology, 6, 199-204
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