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¢ Reinforcement learning has revolutionized our
understanding of learning in the brain in the last
20 years

e Not many ML researchers know this!
1. Take pride

2. Ask: what can neuroscience do for me?

e \\Vhy are you here?

¢ Tolearn about learning in animals and humans

e o find out the latest about how the brain does RL

¢ To find out how understanding learning in the brain can
help RL research




If you are here for other
reasons...

learn what is RL

- learn h
and how to do it earn about the

brain in general

read email

take a well-
needed nap

smirk at the
shoddy state of
neuroscience
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\\Why do we have a brain?’

® pecause computers were not yet invented

to behave

example: sea squirt

larval stage: primitive brain & eye, swims

around, attaches to a rock

adult stage: sits. digests brain.

Credits: Daniel Wolpert
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what do we know about the brain®

Anatomy: we know a lot about what is where and [more or less]

which area is connected to which [But unfortunately names follow

structure and not function; be careful of generalizations, e.g. neurons in motor
cortex can respond to color)

Single neurons: we know quite a bit about how they work (but still don’t
know much about how their 3D structure affects function]

Networks of neurons: we have some ideas but in general are still in
the dark

Learning: we know a lot of facts [LTP, LTD, STDP] (not clear which, if any
are relevant; relationship between synaptic learning rules and computation

essentially unknown)
Function: we have pretty coarse grain knowledge of what different

brain areas do (mainly sensory and motor; unclear about higher cognitive
areas; much emphasis on representation rather than computation)

10



oummary so far...

e \/\/e have a lot of facts about the brain

e But.. we still don't understand that much
about how 1t works

¢ (can ML help??)

11
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what do neuroscientists do all day?

figure out how the brain generates behavior

: A ——————————————— :
brain NS [hechavior
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do we need so many neuroscientists
for one simple question?

e (ld idea:
structure — function

e [he brain is an extremely
complex (and messy])
dynamic biological system

e 10" neurons
communicating through
10" synapses

e we don't stand a chance...

Credits; Peter Latham 14
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IN comes computational
Neuroscience

(relatively] New Idea:

The brain i1s a computing device

Computational models can help us talk about
functions of the brain in a precise way

Abstract and formal theory can help us
organize and interpret (concrete) data

15
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a framework for
computational neuroscience

David Marr (1345-1380] proposed three
levels of analysis:

1.the problem [Computational Level)

2. the strategy (Algorithmic Level]

3. how Its actually done by networks of neurons
Implementational Level)

16
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the problem we all face in our dally lite

optimal decision making

[maximize reward, minimize punishment]

VWhy is this hard?

* Reward/punishment may be delayed
 Outcomes may depend on a series of actions
= "credit assignment problem” (sutton, 1978)
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IN comes reinforcement

learning

¢ [he problem: optimal decision ma
[maximize reward, minimize punis

KINg

nment])

¢ An algorithm: reinforcement learning

¢ Neural mplementation: basal ganglia,

dopamine
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oummary so far...

¢ |dea: study the brain as a computing device

¢ Rather than look at what networks of
neurons in the brain represent, look at
what they compute

¢ \WVhat do animal’s brains compute?

19



Animal Conditioning and RL

¢ two basic types of animal conditioning
(animal learning)

e how do these relate to RL?

I™M ALWAYS WRONG

ABOUT EVERYTHING.

WHAT CANIDO TO
FIX THAT?

www.dilbert.com scontadame®agl.com

20
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how Is this related to RL?

WATCH WHAT |
CAN MAKE PAVLOV DO .
AS SOON As | pROOL, AN
HE'LL SMILE AND WRITE |- ~~ - - - -

IN HIS LITTLE Book.

modelree learning of values of stimuli through experience;
responding conditioned on (predictive] value of stimulus

Dayan et al. (2006] - “The Misbehavior of Value and the Discipline of the Will” 23



Rescorla & Wagner (13972)

he idea: error-driven learning

Change In value Is proportional to the difference between
actual and predicted outcome

AV(S)) =nR— » V(3]

7€E€trial

Two assumptions/ hypotheses:

(1) learning is driven by error (formalize notion of surprise)
(2) summations of predictors is linear

24
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How do we know that animals use an
error-correcting learning rule?

Phase | Phase |l

7 y s

Blocking
[NB. Also in humans]

29
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Tested hungry cats in “"puzzle
boxes”
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2. Instrumental conditioning:
adding control

Edward
Background: Darwin, attempts to Thorndike
show that animals are intelligent (law of effect)

Thorndike (age 23): submitted
PhD thesis on "Animal intelligence:
an experimental study of the
assoclative processes In animals”

ape (sec)

Tested hungry cats in “"puzzle
boxes”

Definition for learning: time to
escape

~
-’
-
-~
—
—_—
e
-’
—
-
-

—
o
-
-~
—
—
—_—

Gradual learning curves, did not
look like ‘insight’ but rather trial
and error

Irials
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Example: Free operant
conditioning (Skinner)

27



Example: Free operant
conditioning (Skinner)
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how Is this related to RL?

/,,_f_‘v‘ TN ‘/,._P

HAVE RESPONSIBILITY
' T HATE BEING }EUI. e QS&%EU;LI ﬁHE PLUS
TEAM LEADER, L1753 ) FEEL LIKE I'M AN t 3LDE, (HE

o0 rREse T ANTMAL IN SOME WARPED |4 \ fgglélgflT?Nf%P
REIAVTORAL STUDY. o EACELLENT.

(4]
o
J
X
.
¥
-
£
%
5

W 1 I Ay “emiknale, @

25 AZMS

Copatight(c) 1995 by United Featre Syndcate. O stibuton via GhN
by EprESS petTi S5i0n of United Featre Syndcae; red stibutoni s prohibited.

animals can learn an arbitrary policy to obtain
rewards (and avoid punishments)
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oummary so far...

e The wor
huge rel

d presents animals/humans with a

nforcement learning problem (or

many such small problems]

¢ (ptima

learning and behavior depend on

orediction and control

e How can the brain realize these”? FROM NOL) ON,

SALARIES GUILL BE
BASED Ot YOUR

Can RL help us understand the PREDICTED SUCCESS

™= NOT YOUR PAST

brain’s computations? -y PERFORMANCE.
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Learning and decision making in animals and humans:
what does RL have to do with it?

A success story: Dopamine and prediction errors
Actor/Critic architecture in basal ganglia

SARSA vs (-learning: can the brain teach us about ML?
Model free and model based RL in the brain
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Risk sensitivity and RL in the brain

Open challenges and future directions
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Nucleus Accumbens |
(ventral striatum)

Dorsal Striatum (Caudate, Putamen)
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role of dopamine: many hypotheses

e Anhedonia hypothesis

e Prediction error hypothesis
e Salience/attention

e (Uncertainty]

® |ncentive salience

e Cost/benefit computation

e Energizing/motivating behavior
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where does dopamine project to?

main target. basal ganglia
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In corticostriatal synapses In the basal ganglia

= Precise (normative!] theory for generation of dopamine
firing patterns

= A computational model of learning allows us to look In
the brain for "hidden variables” postulated by the model
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Actor/Critic in the brain?
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Back to Actor/Critic:
Fvidence from fMRI

ventral striatum: correlated with prediction error in both conditions
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do prediction errors really
influence learning?
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oummary so far...

e Some evidence for an Actor/Critic architecture in the
brain

e |inks predictions (Critic) to control (Actor) in very
specific way; assumes no  values

e (Not at all conclusive evidence
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oummary so far...

e SARSA or Q-learning” The jury Is still out

¢ \\Vhat needs to be done: more experiments
recording from dopamine In telltale tasks

¢ The brain (dopamine) can inform K

L

N10W

does It learn in real time, with real noise, In

real problems?
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Outline

The brain coarse-grain

Learning and decision making in animals and humans:
what does RL have to do with it?

A success story: Dopamine and prediction errors
Actor/Critic architecture in basal ganglia

SARSA vs (-learning: can the brain teach us about ML?
Model free and model based RL in the brain

Average reward RL & tonic dopamine

Risk sensitivity and RL in the brain

Open challenges and future directions
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do animals only learn action policies?

result:
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training:

£OIOMIMIMIN
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Even the humble rat can can learn spatial structure, and

use It to plan flexibly
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® The same action (leverpressing) can arise from two
psychologically dissociable pathways

1. moderately trained behavior is "goal-directed”: dependent on
outcome representation

2. overtrained behavior is "habitual™: apparently not dependent
on outcome representation

® | esions suggest two parallel systems; the intact one
can apparently support behavior at any stage

e (an RL help us make sense of this mess”?
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strategy |l: model free RL

4 0 1 2

B

* |earn values through prediction errors

. . e , Q(Sq,L) =4
. chposmg ac.tlons IS easy so behavior is Stored: Q(S.R) = 0
quick, reflexive Q(S,,L) = 4 ’
® put needs a lot of experience to learn Q(Sy,R) =2 Q(S, L) =1
e and inflexible, need relearning to adapt to Q(S,,R) = 2

any change (habitual) Daw, Niv, Dayan (2005] &7
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this answer raises two questions:

¢ \Why should the brain use two different strategies/
controllers in parallel?

e |f It uses two: how can It arbitrate between the two when
they disagree [new decision making problem...]

OUR NEW STRATEGY
HAS NEVER WORKED
FOR ANYONE BEFORE.

THAT WILL GIVE
US THE ELEMENT
OF SURPRISE.
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dlNnsWwers

1. each system is best in different situations (use each one when It Is most
suitable/most accurate]

goal-directed (forward search] - good with limited training, close to the
reward (don’t have to search ahead too far)

habitual (cache] - good after much experience, distance from reward
not so Important

2. arbitration: trust the system that is more confident in its

recommendation
. estimated| _
® use Bayesian RL (explore/exploit in unknown action
MDP; POMDP) value| | |

different sources of uncertainty in the
two systems ——

cache model
Daw, Niv, Dayan (2003) &9



oummary so far...

¢ animal conditioned behavior is not a simple
unitary phenomenon: the same response can
result from different neural and computational
origins

e different neural mechanisms work in parallel to
support behavior: cooperation and competition

e RL provides clues as to why this should be so,
and what each system does
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Outline

The brain coarse-grain

Learning and decision making in animals and humans:
what does RL have to do with it?

A success story: Dopamine and prediction errors
Actor/Critic architecture in basal ganglia

SARSA vs -learning: can the brain teach us about ML?
Model free and model based RL in the brain

Average reward RL & tonic dopamine [skipped for lack
of time])

Risk sensitivity and RL in the brain *NEW*

Open challenges and future directions
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a guestion:

sure $20 risky $40/$0

53679 A

Decision making is sensitive to risk

RL (expected] values ignore risk

BOLD signals in nucleus accumbens correlate with
prediction errors (can infer value of options from these]

Wil the neural value of a sure 20¢ be the same

as that of a 90% chance risky 40¢ ?

Niv, Edlund, Dayan, O'Doherty (not yet published] 72
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sure 20¢ vs. risky 40¢/0¢

same neural different neural
values values

risk-sensitive
decisions due to other
mechanism that
tracks risk

“decision value”
= E(r]) + aV[r]

Kuhnen & Knutson(20035]
Preuschoff, Bossaerts & Quartz (2006] 773
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sure 20¢ vs. risky 40¢/0¢ H

same neural different neural
values values
two systems: S GEMERREIIEERA | expected values +
expectation, risk | sampling biases nonlinear utility

L vie0) = viao/i0) — L vieo)# vja0i0) —
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oorry...

¢ This is of yet unpublished material so |
hesitate to put the rest of this study online

¢ |f you would like a copy of these slides or of
the paper, feel free to email me at
yael@princeton.edu
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summary so far...

Although we are used to thinking about expected
rewards in RL...

The brain (and human behavior) seems to fold risk
[variance] into predictive values as well

\Why Is this a good thing to do?
Can this help RL applications?
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Outline

The brain coarse-grain

Learning and decision making in animals and humans:
what does RL have to do with it?

A success story: Dopamine and prediction errors
Actor/Critic architecture in basal ganglia

SARSA vs (-learning: can the brain teach us about ML?
Model free and model based RL in the brain

Average reward RL & tonic dopamine

Risk sensitivity and RL in the brain

Open challenges and future directions

/8
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oummary: What have we
learned here?

RL has revolutionized how we think about learning
In the brain

Theoretical, but also practical (even clinical?)
implications for neuroscience

Neuroscience continues to be a "consumer’” of
VIL theory/algorithms

This does not have to be a one-way street:
humans solve some problems so well that 1t Is
silly not to use human learning as an inspiration
for new RL methods
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THANK YOU!

| CANT
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iInterested In reading more?
some recent reviews of neural RL

Y Niv (2008] - Reinforcement learning in the brain - The Journal of Mathematical
Psychology

P Dayan & Y Niv (2008] - Reinforcement learning and the brain: The Good, The Bad and The
Ugly - Current Opinion in Neurobiology, 18(2), 185-196

MM Botvinick, Y Niv & A Barto (2008] - Hierarchically organized behavior and its neural
foundations: A reinforcement learning perspective - Cognition [online prepublication)

K Doya [2008] - Modulators of decision making - Nature Neuroscience 11,410-416

MFS Rushworth & TEJ Behrens (2008] - Choice, uncertainty and value in prefrontal and
cingulate cortex - Nature Neuroscience 11, 389-39/

A Johnson, MA van der Meer & AD Redish (2007] - Integrating hippocampus and striatum
In decision-making - Current Opinion in Neurobiology, 17, 692-697/

JP O'Doherty, A Hampton & H Kim (2007/] - Model-based fMRI and its application to reward
learning and decision making - Annals of the New York Academy of Science, 1104, 35-53

ND Daw & K Doya [2006] - The computational neurobiology of learning and reward -
Current Opinion in Neurobiology, 6, 199-204
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