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Dynamic Model
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Posterior update:
P(y, 1| X1) o< Y P(yil Xve-1) P(xely) P(yesalye).

Yt
Prediction of future events:

P(x:01|X14) = Z P(xp41|ye01) P(yee1| X1:t)-

Yt+1
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Nonlinear Dynamic Model
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Computing the posterior P(y;11|X1:) is difficult.
e Linearize nonlinear function: Extended Kalman Filter.

e Use approximations, e.g. particle filtering.

Inputs are high-dimensional and highly-structured.
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Sufficient Posterior Representation
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e Posterior P(y;y1|X1.:) is approximated by a family of
distributions parameterized by u;.1 € U:
P(yi11|Xa:t) = P(yrs1]ue).

e U, is a sufficient statistic for the posterior P(y;1|X1.¢).
® U, Is a deterministic parameter.
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Sufficient Posterior Representation

Sufficient Posterior Representation (SPR):
P(XH—l’Xl:t) ~ P(Xt+1‘ut+1)-

e Posterior update: w1 = B(x¢, uy) .
Give an arbitrary value to the initial state uy:
Uy = A(Xl) — B(Xl, u1) :
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Sufficient Posterior Representation

e Prediction:

p(XzH—l‘Xl:t) — C(ut+1)-

Key Observation: A,B, and C are deterministic.
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SPR Dynamic Model

A sufficient posterior representation of a dynamic model
(SPR-DM) is given by:

e Observed sequence: {x;}

e Unobserved hidden “state”: {u;}

e State initialization map: us, = A(x1)
e State update map: u; 1 = B(x, uy)

e Prediction map: p(x11|X14) = C(ugq).
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Learning SPR-DM

First prediction problem:
p(x2|x1) = C(A(x1)).

e State is “that information which summarizes the first
observation in predicting the second observation”.

e Internal state can come from any learning algorithm.
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Learning SPR-DM State Evolution

Second prediction problem:
p(x¢| X14-1) = C(B(X¢-1, 0s-1))-

e A state and an observation is used to predict the next
state, reusing the state prediction from previous step.
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Learning SPR-DM

Pretraining: Local learning.

Fine-tuning: Backpropagation through time.

— Learning Nonlinear Dynamic Models —

10



Invertibility of SPR-DM

e To show consistency, we need the notion of invertibility.

The SPR-DM 1s invertible if there exist a function R
such that for all t, R(C(u;)) = uy.

o Let U = p(Xpppruy).

Invertibility: if u; and u} induce the same short range
behavior X;.; ., then they are identical —

They induce the same behavior for all X;...
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SPR-DM used in Experiments

__________________________________________________________________

__________________________________________________________________

___________________________________________________________________________________________________________________

eu; = A(xy1) =0 (ATX1 + b)

e ;= B(x; 1,u 1) =0 (BlTXt_1 + Byuy_1 + b)
Clu)) =C'u; +a

(y) = 1/(1 + exp(—y)).
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Motion Capture Data

e Sequences of 3D joint angles plus body orientation and
translation

e Various walking styles: normal, drunk, graceful, gangly,
chicken, etc.

e 30 training and 8 test sequences, each of length 50.

e Each time step was represented by a vector of 58 real-
valued numbers.
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Motion Capture Data
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e Comparison: 20-dimensional nonlinear model, 20 and
100-state HMM's, and simple linear models (conditioned
on 2 and 5 previous time steps).

— Learning Nonlinear Dynamic Models — 14



Weizmann Video Data

e Video sequences of nine human subjects.

e Various actions: waving one hand, waving two hands,
jumping, and bending.

e 36 training and 10 test sequences, each of length 50.

e Each time step was represented by a vector of 464
real-valued numbers.
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Weizmann Video Data
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e Comparison:
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100-state HMM's, and linear models.
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50-dimensional nonlinear model, 50 and
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hank you.
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