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Learning Dynamic Models

@ Useful for analyzing time-evolving data

Hidden Markov " -k
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ex. Speech Recognition
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Dynamic Bayesian
Networks

ex. Protein Interaction

[Source: SISL ARLUT]
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ex. Automatic Control

[Bagnell & Schneider, 2001] [Source: UAV ETHZ]
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Learning Dynamic Models

@ Useful for analyzing time-evolving data

Hidden Markov
Models W'W‘w -

ex. Speech Recognition

@ Key Assumption: SEQUENCEDwobsﬂemrva“t.i'ons‘
@ What if observations are NOT SEQUENCED? J

ex. Protein Interaction T T i T i
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System Identification PO -~ .
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When are observations not sequenced?

Galaxy evolution
(many snapshots,
no ordering)

[Source: STAGES]

Slow-developing
diseases, ex.
Alzheimer's and
Parkinson's

[Source: Getty Images]

Destructive
measurement for
biological
processes

[Source: Bryan Neff Lab, UWO]
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When are observations not sequenced?

Galaxy evolution
(many snapshots,
no ordering)

[Source: STAGES]
Slow-developing
diseases, ex.
Alzheimer's and
Parkinson's

[Source: Getty Images]

Destructive
measurement for
biological
processes

Bl [Source: Bryan Neff Lab, UWO]

How can we learn dynamic models? J
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Formal Definition

o Consider linear, discrete-time, continuous-state, and
fully observable systems:

x' — Ax" 1 e, e~ N(0,5°1)
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Formal Definition

o Consider linear, discrete-time, continuous-state, and
fully observable systems:

x' — Ax" 1 e e~ N(0,5°1)

@ Exactly one observation from each trajectory

for i =1to N do 4 4
Randomly pick T; € {1,..., Thax} AX:A3
fort=1to T; do )

xt e Axt7l 4 ¢ D%
end for X4X3A
Y SO
Set x; = x oo
end for AV
Output: A sample x1,X%o, ..., Xy
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Goal

o Estimate A (and 02) from non-sequenced sample
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(b) Estimated gradients

Estimated gradient: lz\x,- — X;
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True Likelihood: Notation

@ Let x be a point in the state
space of the system, and t(x) be
its time index

@ Let f(x) be the state space
density induced by the system

o Let g(x|j) be the state space
density at time j
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True Likelihood

@ If the true predecessor X; of x; is known, we may
write the joint likelihood:

N [|xi A’N(i||2
. . exp( o7 )
/(xl,...,xN]xl,...,xN):H v
, (2mo?)z
i=1
/52T
. /I//’:‘{\
Recall the system equation: i
\\\\ ,//I
- 2 \:: %
Xj — AX; +¢€, e ~ N(0,0°/) h )
xI
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True Likelihood (Cont.)

@ If the true predecessor X; of x; is known, we may
write the joint likelihood:
N

I(x, o oxwl&e, %) =[]

i=1

[[xi—A%; |2

exp(—5=)
(2702)?

@ But Xx; is unknown, so integrate it out w.r.t the
density at time t(x;) — 1:

/(Xl, Cey XN’t(Xl), ceey t(xN))

N (A
11 (/ pgsz)“g )g(xt(xf)—l)dX>

i=1,
t(x;)>0
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Approximate Likelihood Approaches

e Maximizing /(xq, ..., xn|t(X1),..., t(xy)) on A and
0 is hard
t(x;) is missing
g(x|t(x;) — 1) contains high-order terms in A

An Unordered Model (UM)

o
o
@ Instead, maximize approximate likelihood
o
o A Partial-ordered Model (PM)
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Unordered Model (UM)

@ Assume t(x;) uniformly sampled from {1,..., T}
@ Marginalize over the missing t(x;):

N Ime ex —7”’("2_/;"”2 x|t(x;) —1
I(X1,...,xn) = H Z (/ pégw(ﬂ;% )¢l |t7('ma)x )dx)

i:1> i =1
t(x;)> (o)
N x; —Ax||2
S| oxp(— ) f(x)dx
paley (2mo?)?
t(x,-)>0
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Unordered Model (UM)

@ Assume t(x;) uniformly sampled from {1,..., T}
@ Marginalize over the missing t(x;):

N Tax ||X,'—AX||2
_ exp(— 5 ) g(x[t(x;) — 1)
I(x1,...,xXn) = H Z (/ (2n02) = dx
i=1, t(x;)=1 max
t(x;)>0

_ |Ixi—Ax|?
exp 2 ) f(x)dx)

%
—=
~— A/
—
~
3
ql\)
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@ Expectation Maximization

@ Introduce latent predecessor variable Z € {0, 1}V*N
Zj; indicates whether x; comes from x;

o E-step:
Similar to that of Gaussian Mixture Models

@ M-step (for A and o?):
Least square linear regression
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UM: Pros and Cons

@ Pros: reasonable approximation, simple estimation

@ Cons: marginalizing over t(x;) obscures the
underlying order in time = degenerate estimates,
lacking globally evolving dynamics

\l\

’/‘\\\ “ﬂ” ] U
'g;::\& \\:\ 50 . ,v’;“‘« ;f%uilﬂ

50 \/\\\\\\ \\\\\\\ 2 fﬁf me;wd
0 e R \ a0 nM ! é i
2 N N 20 /f ﬂé i

AN AN &?r I
. N v - W, e
10 AR R o ”,g,/r‘

Ny, pp e

0 \‘1$ij / o -10
10 - S T »
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Partial-ordered Model (PM)

@ |dea: instead of marginalizing over t(x;), try to
estimate it

@ Estimating t(x;) directly is hard, may involve:
¢ Finding a total order of sample points
© Maximization over permutations

@ Solution: break total order into pairwise
relationships, then seek a partial order
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PM: Approximate likelihood

@ In true likelihood, approximate g(x|-) by data:

I(x1, ..., xy|t(x1), ..., t(xn))

N [[xi —Ax||*
exp(— 52 )
- 11 ( / 5 22)3 g(x|t(x,-)—1)dx)
i=1,t(x;)>0 o

A2
N (exp(—”x'zfjjll)

- g(Xj‘ t(X,') — 1)) S: the set of start states

2
1==
g
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PM: Approximate likelihood

@ In true likelihood, approximate g(x|-) by data:

I(x1, ..., xy|t(x1), ..., t(xn))

N i Ax
exp(— 52 )
- 11 (/ 5 22); g(x|t(x,~)—1)dx)
i=1,¢(x;)>0 o

A2
N (exp(—”x'zf;J”)

- g(XJ" t(X,') — 1)) S: the set of start states

N N o~ _||Xi—Asz||2
72(x1, CoXy) = H Z ( p((27ra22;5 )w;j> (PM)
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PM: Constraints

o wjj = g(x;|t(x;) — 1) ~ Prob. that x; precedes x;
Matrix w > 0, each row sumsto 1 or 0 (C1)

@ We want time direction to be consistent:

As an adjacency matrix,
w represents a directed acyclic graph

@ Modified constraints

w € {0,1}V*N represents a directed TREE  (C2)

Efficient computation
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PM Estimation: Alternating Optimization

@ Constrained maximization:
lIxi—Ax;||*
exp(— 202 )
g Sy (TR
i#r

N N
s.t. w,-J-E{O,l}, Zwij:la i;ér, de:()’
j=1 J=1

w forms a tree with root x,

@ Maximize w under fixed A and o2

Maximum spanning tree on directed graph: O(N?)
@ Maximize A and o2 under fixed w:

Least-square linear regression
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Initialization for UM and PM

@ Random initialization

@ Manifold Learning/Dimensionality Reduction

(1) Project data points into a one-dimensional space

(2) Sort data points by their 1-D projections

(3) Learn a linear dynamic model based on sorted data

(4) Initialize UM and PM with the learned model parameters

Ordering by Maximum Variance Unfolding [Weinberger et al., 2004]:

Original Data Index Estimated Time Index by MVU
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Experiment Setting: Data sets

@ 2D: 40 random samples, 200 points each, 0 = 0.2.
o 3D-1 and 3D-2:

@ Small-sized experiments: 40 random samples, 200 points
each, 0 =0.2,0.4,0.6,0.8.

@ Large-sized experiments: 20 random samples, 2,000
points each, ¢ = 0.2,0.4,0.6,0.8.

o
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Experiment Setting: Methods

Compare six methods:

@ Maximum Variance Unfolding (MVU), only on small
samples

o PM, UM: multiple random initializations, choose the
best estimate (largest likelihood)

o PM+MVU, UM+MVU: PM, UM initialized by
MVU, only applied to small samples

@ Rand: Random guess of A and o2
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Evaluation Criteria

@ Rate-adjusted matrix error

ME(A, A) = min || A — At||r
te@

Q={#£1,+£2,...,4£10,+1/2,£1/3,...,+£1/10}
Smaller is better

@ Normalized gradient cosine score

N (Ax; — x;) (Ax; — x;)
CS(AA) = — = e 0,1
e Z 7 A = xif[[[Axi — xi o

Larger is better

ICML 2009
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Results: 2D

Table: Results on 40 samples with standard deviations, o = 0.2

Matrix Error

Cosine Score

Rand MVUPM+MVU PM UM+MVU UM

Estimated gradients by UM

r

1
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0.5 0.4

ol L 0.
Rand MVUPM+MVU PM UM+MVU UM
True gradients
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(d) Estimated gradients by PM,

cosine score = 0.9921
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Results: 3D-2
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3D-2, 0 = 0.2, 2,000-points sample
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3D-1: Boxplots of ME and CS, o0 = 0.6
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3D-2: Boxplots of ME and CS, 0 = 0.6
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Findings and Issues

® MVU less useful in 3D than 2D
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Findings and Issues

® MVU less useful in 3D than 2D

@ In 3D-1, PM better than UM on small samples, but
UM improves more than PM as sample size increases
Directionality constraints introduce some bias

@ UM can be almost as
poor as Rand even if
samples are large

@ What are the
limitations of it?

@ Under what conditions
and to what extent the
problem can be solved?

UM (3D-1, o = 0.2)
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Conclusions

@ Propose the problem of learning fully observable
linear dynamical systems from non-sequenced data
@ Propose two approximate likelihood approaches
@ Unordered Model
@ Partial-ordered Model
Work well on synthetic data
@ Many interesting future directions

@ Real data: astronomical, medical, biological
@ Theoretical properties of the problem

@ Nonlinear dynamical systems

o Partial observability
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