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> MAL-based systems are finding application in a wide
variety of domains
> Tools to understand and model the expected dynamics
are necessary

Multiagent Q-learning with e-greedy exploration J

> Classic algorithm
> It has been applied with success in several domains

Dynamic Analysis of Multiagent Q-learning with e-greedy Exploration, ICML 2009 Eduardo R. Gomes



SWIN ¢

IO \otivation
* NE *

CENTRE FOR aQl .
COMPLEX -learnin
SOFTWARE ea g

TS > Most studied Reinforcement Learning algorithm

> Strong theoretical support and convergence guarantees

ynamic Analysis of Multia - i i eedy Exploration, ICML 2009 Eduardo R. Gomes



SWIN ¢

IO \otivation
* NE *

CENTRE FOR

COl - i
SOF?EL:?E Q Ieammg

TS > Most studied Reinforcement Learning algorithm

> Strong theoretical support and convergence guarantees
> ... only in the single-agent case

Dynamic Analysis of Multi i i reedy Exploration, ICML 2009 Eduardo R. Gomes



SWIN ¢

IO \otivation
* NE *

CENTRE FOR

COl - i
SOF?EL:?E Q Ieammg

TS > Most studied Reinforcement Learning algorithm

> Strong theoretical support and convergence guarantees
> ... only in the single-agent case

Dynamic Analysis of Multi i i reedy Exploration, ICMI Eduardo R. Gomes



P

SWIN

IO \otivation
* NE *

CENTRE FOR

COMPLEX - i
[y Q-learning

TS > Most studied Reinforcement Learning algorithm

> Strong theoretical support and convergence guarantees
> ... only in the single-agent case

Multiagent Q-learning

Lack of theoretical support and convergence guarantees
Very dynamic environment

Co-adaptation effect

Rewards and state transitions depend on the joint actions
Very hard to obtain the dynamics
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Same principles

— Growth in one strategy’s probability is directly proportional

to its performance against the others

Model of Multiagent Q-learning with Boltzmann
exploration
Cannot be applied because we have a semi-uniform
distribution
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Researchers have explored links between RL and EGT
Same principles

— Growth in one strategy’s probability is directly proportional

to its performance against the others

Model of Multiagent Q-learning with Boltzmann
exploration
Cannot be applied because we have a semi-uniform
distribution
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€ — greedy mechanism
> Selects the best action with probability 1 — ¢
> Selects a random action with probability &
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Rvices >~ Each agent applies the standard Q-learning algorithm

> The agents learn independently

> Rewards and state transitions depend on their joint
strategies

> Each agent maintains a table of Q-values
— Q(s,i) represents how good it is to take action i at state s

> They update the Q-values as they gather experience in
the environment
Q(s.i) = Q(s.i) + a(r(s. ) + ymaxy Q(s',1') — Q(s, i))
— r(s,i) is the reward for taking action i at state s
— o is the learning rate
— vis the discount rate
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TS > exploit actions known to be good

> explore new actions

e-greedy
> chose the currently best action with probability 1 — ¢
> chose a random action with probability €

x(s.1) = (1—¢€)+(g/n), if Q(s,i)is currently the highest
" \e/n, otherwise
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> Analyse the limits of this equation for the single-learner
case

> Show how they change dynamically in the multi-learner
case

> Investigate how the e-greedy affects the shape of the
function

> Develop a system of difference equations to obtain the
expected behaviour of the agents
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The reward functions can be described as payoff tables

a aqo b11 b12 }
A= B=
{ a1 ax } { by boo

Q-learning rule can be simplified to

Qy

1

— Qg+ 0(rg; — Qg;)

Q; is the Q-value of agent a for action /i
Iy is the immediate reward that agent a receives for playing
action i
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Qa(k+1) = Qg (k) + a(ra(k+1) — Qq(k)) J

Qa(k+1) — Qq (k) = (ra;(k+1) — Qq(K)) discrete |

Qu,(k + At)— Qs (k) ~ At x (1 (k + At) — Qs (K)) |

limaro 22U FA0"9 ) o (r, (k) — Qu(K)) )
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dQa; (k
Bl (1 (k) — Qa(K))

continuous J

Qs (k) = Ce % 41,

general solution

J

iMoo Qg (k) = lim Ce™* + lim ry, = ra,
t—oo t—oo

—_——— ——
0 fa,-
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ra; can be replaced by E[rg] =Y, a;y;

0.2
(08102] | o |

Elra,]

(0.851)+(0.2+5)=1.8
(0.840)+(0.243) = 0.6

1 5
0 3

dQg(t

_dlt(_) ~ OC(E[fa;(t)] - Qa,-(t))

Qg (t) = Ce~*' + E[rg]

im;~c. Qay(K) = im Ce™ '+ lim Elra] = Elra]

—_———— ————
0 Elra]
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[08]02] E[ra]=(0.8%1)+(0.2x5) =18
E[ra) = (0.8%0)+(0.2%3) = 0.6

1 5
0 3

dQg(t

_dlt(_) ~ OC(E[fa;(t)] - Qa,-(t))

Qg (t) = Ce~*' + E[rg]

im;~c. Qay(K) = im Ce™ '+ lim Elra] = Elra]

—_———— ————
0 Elra]

then Qg will move in expectation towards E[r,,] in a monotonic
fashion J
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(08]02]

5
3

E[ra,] = (0.8%1)+(0.2%5) = 1.8

E[ra,] = (0.251)+(0.845) = 4.2

o|—|lo o|—=
o

| 0.8 |
5
3
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(08]02]

5
3

E[ra,] = (0.8%1)+(0.2%5) = 1.8

E[ra,] = (0.251)+(0.845) = 4.2

o|—|lo o|—=
o

| 0.8 |
5
3

Each time the expected reward changes, it changes the limits
and direction fields J
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Learning adversary

strategy will occur

P

Important to identify when the changes in the adversary’s J

e-greedy updates the strategy whenever a new action
becomes the one with highest Q-value

Need to find the intersection points in the adversary’s functions )

Agent 1
Q
4 Q1 - theoretical
3.5 Q2 - theoretical
3
25
2
15
]
0.5
0 Il Il Il Il J

o
N
S
IS
o
[o2]
o
®
o
=)
IS)

Agent 2
Q
T
3':53 Q1 - theoretical
Q2 - theoretical
25
ot/ TS~
15
]
0.5
0
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eg.ife=02 — x=[09,0.1]orx=1[0.1,0.9]

they are updated at different speeds

(1)

e~ xi(t)a(Elra,(6)] - Qa (1)) )
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they are updated at different speeds

950 xi(t)a( Elray(1)] — Qa (1)) J

Qs (1) = Ce~% 4 E[ry] [
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lim¢ oo Qai(t) - t“—rDo Ce_xjat+t!i—[>1;lo E[rai] = E[ra/]

e — N——
0 Elrg]

But changes the shape of the function and associated
direction field
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are the values to wich the Q-values will converge to

Speeds

determine the paths that the Q-values will follow to get there
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Summary of the analysis (roughly speakirl?&
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Expected Rewards
are the values to wich the Q-values will converge to

Speeds

determine the paths that the Q-values will follow to get there

Intersection points
define if the Q-values will ever get there
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System of difference equations

A and B XandY Qz and Qy
payoff tables | strategy vectors | Q-values vectors

Qa,(t-+1) = Qa () + X(D(E; 33%(1) ~ Qu (1)) J

Qp,(t+1) = Qp, (1) +yi(t)a(¥X; bx;(t) — Qp, (1)) |

xi(f) = (1—¢)+(g/n), if Qq(t)is currently the highest
7 ) e/n, otherwise

(1—€)+(g/n), if Qp(t)is currently the highest
yi(t) = /
g/n, otherwise
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Q:=[0,1, Qy=[1,0, a=0.1,e=04
X =10.2,0.8], Y =[0.8,0.2].
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Prisoner’s

Dilemma

A 1 5 B 10
0 3 5 3
Qa=[01], Qy=[1,0], a=0.1, £ =0.4
X=1[0.2,0.8], Y =[0.8,0.2].
Q Agent 1 Pr Agent 1 - Theoretical Pr Agent 1 - Observed
4 1r 1r
3.5 Q1 - theoretical
3 Q1 - observed - 0.8 0.8
25 Q2 - theoretical
-2 Q2 - observed - 0.6 Action 1 0.6 Action 1
15 0.4 Action 2 0.4 Action 2
1
.2 .2
0.5 0 0
0 0 L L L L s 0 L L L L s
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
LE LE LE
Q Agent 2 Pr Agent 2 - Theoretical Pr Agent 2 - Observed
4 1r 1r
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— Studied a continuous-time version of the Q-learning update
rule

— Investigated how the presence of other agents and the
e-greedy mechanism affect it

> Defined a system of difference equations

— Model the expected evolution of the Q-values
— Derive the expected behaviour from the Q-values

> The evaluation of the model in typical games has shown
its feasibility
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