Group lasso with Overlap and Graph Lasso

Laurent Jacob^{1,2} Guillaume Obozinski^{3,4} Jean-Philippe Vert^{1,2}

¹Mines ParisTech, Centre for Computational Biology ²Institut Curie, INSERM U900 ³Ecole Normale Supérieure ⁴INRIA – Willow project

16 juin 2009

Lasso

Well known that regularizing a learning problem by ℓ_1 -norm induces sparse solutions (Tibshirani, 1996, Chen *et al.*, 1998).

Sparsity-inducing norms

Group lasso

If groups of covariates are likely to be selected together, the ℓ_1/ℓ_2 -norm induces sparse solutions at the group level (Yuan & Lin, 2006).

Biological markers for cancer

Predict metastasis, identify few predictive genes.

Jacob, Obozinski, Vert (ParisTech, INRIA)

Overlapping group lasso

Gene selection

• X is the expression matrix of p genes for n tumors.

- Learning with a ℓ₁-penalty favors a linear classifier w ∈ ℝ^p involving few genes.
- Remark : may only select one of several correlated genes.
- After this selection, people often try to find enriched *functional groups*.

- We have prior information under the form of groups of genes with functional meaning (*e.g.* pathways).
- We would like to favor directly w involving few groups
 - Better interpretability.
 - Correlated genes typically in the same group, hence selected together.
 - Robustness to spurious gene selection.
- Group lasso originally proposed for disjoint groups.
- For overlapping groups, $\Omega_{group}(w) = \sum_{g \in \mathcal{G}} \|w_g\|_2$ is still a norm and has been considered for :
 - Hierarchical variable selection (Zhao et al. 2006, Bach 2008).
 - Structured sparsity (Jenatton *et al.* 2009).

- We have prior information under the form of groups of genes with functional meaning (*e.g.* pathways).
- We would like to favor directly w involving few groups
 - Better interpretability.
 - Correlated genes typically in the same group, hence selected together.
 - Robustness to spurious gene selection.
- Group lasso originally proposed for disjoint groups.
- For overlapping groups, $\Omega_{group}(w) = \sum_{g \in \mathcal{G}} \|w_g\|_2$ is still a norm and has been considered for :
 - Hierarchical variable selection (Zhao et al. 2006, Bach 2008).
 - Structured sparsity (Jenatton *et al.* 2009).

- We have prior information under the form of groups of genes with functional meaning (*e.g.* pathways).
- We would like to favor directly w involving few groups
 - Better interpretability.
 - Correlated genes typically in the same group, hence selected together.
 - Robustness to spurious gene selection.
- Group lasso originally proposed for disjoint groups.
- For overlapping groups, $\Omega_{group}(w) = \sum_{g \in \mathcal{G}} \|w_g\|_2$ is still a norm and has been considered for :
 - Hierarchical variable selection (Zhao et al. 2006, Bach 2008).
 - Structured sparsity (Jenatton *et al.* 2009).

- We have prior information under the form of groups of genes with functional meaning (*e.g.* pathways).
- We would like to favor directly w involving few groups
 - Better interpretability.
 - Correlated genes typically in the same group, hence selected together.
 - Robustness to spurious gene selection.
- Group lasso originally proposed for disjoint groups.
- For overlapping groups, $\Omega_{group}(w) = \sum_{g \in \mathcal{G}} \|w_g\|_2$ is still a norm and has been considered for :
 - Hierarchical variable selection (Zhao et al. 2006, Bach 2008).
 - Structured sparsity (Jenatton et al. 2009).

Biological markers for cancer

Issue of using the group-lasso

- $\Omega_{group}(w) = \sum_{g} \|w_{g}\|_{2}$ sets groups to 0.
- One variable is selected ⇔ all the groups to which it belongs are selected.

 $\begin{array}{c} G_{1} \\ \Rightarrow \\ \|w_{g_{1}}\|_{2} = \|w_{g_{3}}\|_{2} = 0 \end{array} \begin{array}{c} 0 \\ G_{2} \\ G_{3} \end{array}$

election of conta

Removal of *any* group containing a gene \Rightarrow the weight of the gene is 0.

IGF selection \Rightarrow selection of unwanted groups

Jacob, Obozinski, Vert (ParisTech, INRIA)

Overlapping group lasso

Overlap norm

Introduce latent variables v_g :

$$\begin{cases} \min_{w,v} \mathcal{L}(w) + \lambda \sum_{g \in \mathcal{G}} \|v_g\|_2 \\ w = \sum_{g \in \mathcal{G}} v_g \\ \operatorname{supp}(v_g) \subseteq g. \end{cases}$$

Properties

- Resulting support is a *union* of groups in \mathcal{G} .
- Possible to select one variable without selecting all the groups containing it.
- Setting one v_g to 0 doesn't necessarily set to 0 all its variables in w.

Overlap norm

$$\begin{cases} \min_{w,v} L(w) + \lambda \sum_{g \in \mathcal{G}} \|v_g\|_2 \\ w = \sum_{g \in \mathcal{G}} v_g \\ \operatorname{supp}(v_g) \subseteq g. \end{cases} = \min_{w} L(w) + \lambda \Omega_{overlap}(w)$$

$$\stackrel{h}{\Omega_{overlap}(w)} \stackrel{\Delta}{=} \begin{cases} \min_{v} \sum_{g \in \mathcal{G}} \|v_g\|_2 \\ w = \sum_{g \in \mathcal{G}} v_g \\ \operatorname{supp}(v_g) \subseteq g. \end{cases}$$
(*)

Property

wit

- $\Omega_{overlap}(w)$ is a norm of w.
- Ω_{overlap}(.) associates to w a specific (not necessarily unique) decomposition (v_g)_{g∈G} which is the argmin of (*).

Jacob, Obozinski, Vert (ParisTech, INRIA)

Overlapping group lasso

Equivalent formulation

Regular group-lasso in latent variable space

$$\begin{cases} \min_{w,v} L(Xw) + \lambda \sum_{g} \|v_{g}\|_{2} \\ w = \sum_{g} v_{g} \\ \operatorname{supp}(v_{g}) \subseteq g. \end{cases} = \min_{\tilde{v}} L(\tilde{X}\tilde{v}) + \lambda \sum_{g} \|\tilde{v}_{g}\|_{2} \end{cases}$$

Jacob, Obozinski, Vert (ParisTech, INRIA)

Overlap and group unity balls

Balls for $\Omega_{\text{group}}^{\mathcal{G}}(\cdot)$ (middle) and $\Omega_{\text{overlap}}^{\mathcal{G}}(\cdot)$ (right) for the groups $\mathcal{G} = \{\{1,2\},\{2,3\}\}$ where w_2 is represented as the vertical coordinate. Left : group-lasso ($\mathcal{G} = \{\{1,2\},\{3\}\}$), for comparison.

Consistency in group support

- Let \bar{w} be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_g such that $\bar{w} = \sum_g \bar{v}_g$ and $\Omega^{\mathcal{G}}_{\text{overlap}}(\bar{w}) = \sum \|\bar{v}_g\|_2$.
- Consider the regularized empirical risk minimization problem $L(w) + \lambda \Omega^{\mathcal{G}}_{\text{overlap}}(w).$

Then

- under appropriate mutual incoherence conditions on X,
- as $n \to \infty$,
- with very high probability,

the optimal solution \hat{w} admits a unique decomposition $(\hat{v}_g)_{g\in\mathcal{G}}$ such that

 $\{g\in \mathcal{G}|\hat{v}_g\neq 0\}=\{g\in \mathcal{G}|\bar{v}_g\neq 0\}.$

Consistency in group support

- Let \bar{w} be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_g such that $\bar{w} = \sum_g \bar{v}_g$ and $\Omega^{\mathcal{G}}_{\text{overlap}}(\bar{w}) = \sum \|\bar{v}_g\|_2$.
- Consider the regularized empirical risk minimization problem $L(w) + \lambda \Omega^{\mathcal{G}}_{\text{overlap}}(w).$

Then

- under appropriate mutual incoherence conditions on X,
- as $n \to \infty$,
- with very high probability,

the optimal solution \hat{w} admits a unique decomposition $(\hat{v}_g)_{g \in \mathcal{G}}$ such that

$$\left\{g\in \mathcal{G}|\hat{v}_g\neq 0\right\}=\left\{g\in \mathcal{G}|\bar{v}_g\neq 0\right\}.$$

Graph lasso

Graph lasso

• Other types of biological priors can be represented as graphs (protein interaction, gene regulation...).

- In that case, it is reasonable to expect that relevant genes form connected components in such a graph.
- Moreover, these components might be used as groups of potential drug targets and uncover biological processes relevant for metastasis.

Graph lasso

• Consider groups that are subgraphs whose union would give such connected components (*e.g.*, edges *E*).

•
$$\Omega_{\text{graph}}(w) = \min_{v \in \mathcal{V}_E} \sum_{e \in E} \|v_e\|$$
 s.t. $\sum_{e \in E} v_e = w$, $\text{supp}(v_e) = e$.

Results

Synthetic data : overlapping groups

- 10 groups of 10 variables with 2 variables of overlap between two successive groups : $\{1, \ldots, 10\}, \{9, \ldots, 18\}, \ldots, \{73, \ldots, 82\}.$
- Support : union of 4th and 5th groups.
- Learn from 100 training points.

Frequency of selection of each variable with the lasso (left) and $\Omega^{\mathcal{G}}_{overlap}(.)$ (middle), comparison of the RMSE of both methods (right).

Jacob, Obozinski, Vert (ParisTech, INRIA)

Overlapping group lasso

Results

Breast cancer data

- Gene expression data for 8,141 genes in 295 breast cancer tumors.
- Canonical pathways from MSigDB containing 639 groups of genes, 637 of which involve genes from our study.

Method	ℓ_1	$\Omega^{\mathcal{G}}_{overlap}\left(. ight)$
Error	0.38 ± 0.04	0.36 ± 0.03
♯ path.	148, 58, 183	6, 5, 78
Prop. path.	0.32, 0.14, 0.41	0.01, 0.01, 0.17

Graph on the genes.

Method	ℓ_1	$\Omega_{graph}(.)$
Error	0.39 ± 0.04	0.36 ± 0.01
Av. size c.c.	1.1, 1, 1.0	1.3, 1.4, 1.2

Summary

- Generalization of the group-lasso penalty leading to sparsity patterns which are *unions* of overlapping groups.
- Helps to recover sparse connected patterns in a graph.
- Group-consistency conditions.
- Encouraging results on breast cancer data.

Future works

- Comparison with Ω_{group} when both retrieve the same class of patterns (*e.g.* graphs).
- Weighted penalty (group sizes, overlap sizes).
- More general consistency conditions.

Dual formulation

$$\Omega_{overlap}(w) = \begin{cases} \inf_{v} \sum_{g} \|v_{g}\|_{2} \\ w = \sum_{g} v_{g} \\ \sup p(v_{g}) \subseteq g. \end{cases} = \begin{cases} \sup_{\alpha} \alpha^{\top} w \\ \forall g, \|\alpha_{g}\|_{2} \leq 1 \\ \forall g, \|\alpha_{g}\|_{2} \leq 1 \end{cases}$$
(1)

A vector α ∈ ℝ^p is a solution of (1) if and only if there exists
 v = (v_g)_{g∈G} ∈ V(w) such that :

$$\forall g \in \mathcal{G}, \text{ if } v_g \neq 0, \ \alpha_g = rac{v_g}{\|v_g\|} \text{ else } \|\alpha_g\| \leq 1$$
 (2)

• Conversely, a \mathcal{G} -tuple of vectors $\mathbf{v} = (v_g)_{g \in \mathcal{G}} \in \mathcal{V}_{\mathcal{G}}$ such that $w = \sum_g v_g$ is a solution to (1) if and only if there exists a vector $\alpha \in \mathbb{R}^p$ such that (2) holds.

Consistency

If we assume that

$$(H1) \qquad \Sigma := \frac{1}{n} X^\top X \succ 0$$

2 (H2) There exists a neighborhood of \bar{w} in which the decomposition in v is unique,

then

$$\forall g \in \mathcal{G}_2, \ \left\| \Sigma_{gJ_1} \Sigma_{J_1J_1}^{-1} \alpha_{J_1}(\bar{w}) \right\| \le 1 \tag{C1}$$

$$\forall g \in \mathcal{G}_2, \ \|\boldsymbol{\Sigma}_{gJ_1}\boldsymbol{\Sigma}_{J_1J_1}^{-1}\boldsymbol{\alpha}_{J_1}(\bar{w})\| < 1 \tag{C2}$$

are respectively necessary and sufficient for the minimization of

$$\min_{w \in \mathbb{R}^{p}} R(w) + \lambda \Omega_{\text{overlap}}^{\mathcal{G}}(w) , \qquad (3)$$

to estimate consistently the group-support of \bar{w} .

Consistency : Remark

• Consistency conditions for $\Omega_{overlap}^{\mathcal{G}}(.)$:

$$\forall g \in \mathcal{G}_2, \ \|\boldsymbol{\Sigma}_{gJ_1}\boldsymbol{\Sigma}_{J_1J_1}^{-1}\boldsymbol{\alpha}_{J_1}(\bar{w})\| \le 1$$
(C1)

$$\forall g \in \mathcal{G}_2, \ \|\boldsymbol{\Sigma}_{gJ_1}\boldsymbol{\Sigma}_{J_1J_1}^{-1}\boldsymbol{\alpha}_{J_1}(\bar{w})\| < 1 \tag{C2}$$

• Consistency conditions for group-lasso (Bach et al., 2008) :

$$\forall g \in \mathcal{G}_2, \ \|\Sigma_{gJ_1} \Sigma_{J_1J_1}^{-1} \mathsf{Diag}(1/\|ar{w}_{J_1,i}\|_2)_i ar{w}_{J_1}\| \le 1$$
 (C1)

$$orall g \in \mathcal{G}_2, \ \| \Sigma_{gJ_1} \Sigma_{J_1J_1}^{-1} \mathsf{Diag}(1/\|ar w_{J_1,i}\|_2)_i ar w_{J_1} \| < 1$$
 (C2)

- No closed form for $\alpha(\bar{w})$ in the general case.
- If there is no overlap, we recover the group-lasso result.