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A Motivating Example

user

item Give partial rankings of items
by some users

Predict the missing rankings

A large user-item matrix is
given

Predict the missing entries in
the user-item matrix

A matrix completion problem
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A Motivating Example–Contd.

Only a few factors contribute to a user’s taste
Approximate the rating matrix with a low-rank matrix

min
W

∑

i ,j∈observed

ℓ(Mij ,Wij) + λ ∗ rank(W )

M W

low rank
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A Motivating Example–Contd.

Rank minimization is NP-hard

Assume W = UV

Optimize over U and V iteratively

Solution is locally optimal

x

M U

V
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Convex Relaxation of Rank Function

Trace norm is the convex envelope of the rank function over the unit
ball of spectral norm ⇒ a convex relaxation

Trace norm of a matrix is the sum of its singular values:

W = U








σ1 0 · · · 0
0 σ2 · · · 0
...

...
...

...
0 0 · · · σk








V T

||W ||∗ =
k∑

i=1

σi = ||(σ1, · · · , σk)||1

trace norm ≈ rank ⇔ L1 ≈ L0
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Problem Formulation

min
W

F (W ) = f (W )
︸ ︷︷ ︸

loss

+ λ||W ||∗
︸ ︷︷ ︸

regularization

W ∈ R
m×n: the matrix variable

The gradient of f (·) is Lipschitz continuous:

|| ▽ f (X ) −▽f (Y )||F ≤ L||X − Y ||F , ∀X ,Y ∈ R
m×n

||W ||∗ is NOT a smooth (differentiable) function
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Trace Norm Regularized Problems

Matrix completion (Srebro et al. 2005, Candés & Recht, 2008):
f (W ) =

∑

(i ,j)∈Ω ℓ(Mij ,Wij )

M ∈ R
m×n: the partially observed matrix with the entries in Ω being

observed

min
W

∑

i ,j∈Ω

ℓ(Mij ,Wij) + λ||W ||∗

Multi-task learning (Abernethy et al. 2006, Argyriou et al. 2008):

f (W ) =
∑n

i=1

∑si
j=1 ℓ(y j

i ,w
T
i x j

i )

n: the number of tasks
(x j

i , y
j
i ) ∈ R

m × R: the jth sample in the ith task
si : the number of samples in the ith task
W = [w1, · · · , wn] ∈ R

m×n

Matrix classification (Tomioka et al. 2008, Bach 2008):
f (W ) =

∑s
i=1 ℓ(yi ,Tr(W TXi))

(Xi , yi ) ∈ R
m×n × R: the ith sample
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The Subgradient Method

Trace norm is non-smooth

Apply the subgradient method as

Wk = Wk−1 −
1

tk
F ′(Wk−1)
︸ ︷︷ ︸

subgradient at Wk−1

The subgradient method converges as O( 1√
k
):

F (Wk) − F (W ∗) ≤ c
1√
k

Remark

This convergence rate is optimal for non-smooth problems under the
first-order black-box model (Nesterov 2003)

Convergence rate cannot be improved if no special structure of the
trace norm is exploited
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Our Main Contributions

By exploiting the special structures of trace norm, we propose two
algorithms:

Extended Gradient Algorithm: converges as O( 1
k
)

Accelerated Gradient Algorithm: converges as O( 1
k2 )

Remark

O( 1
k2 ) is the optimal convergence rate for smooth problems (Nesterov

2003) ⇒ the non-smoothness effect of trace norm is removed
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Two Equivalent Views of Gradient Descent

Consider the minimization of the smooth function

min
W

f (W )

using gradient descent:

Wk = Wk−1 −
1

tk
▽ f (Wk−1)

It can be reformulated equivalently as

Wk = arg min
W







f (Wk−1) + 〈W − Wk−1,▽f (Wk−1)〉
︸ ︷︷ ︸

linear approximation at Wk−1

+
tk
2
||W − Wk−1||2F

︸ ︷︷ ︸

regularization







What about ||W ||∗?
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Incorporating the Non-smooth Term

Add λ||W ||∗ directly without approximation

Solve the trace norm regularized problem by the iterative step:

Wk = arg min
W







linear approximation + regularization
︸ ︷︷ ︸

corresponds to f (W )

+λ||W ||∗







It can be expressed equivalently as

Wk = arg min
W

{ tk
2
||W − A||2F + λ ||W ||∗

}

where A = Wk−1 − 1
tk
▽ f (Wk−1)

The above problem can be solved by first computing the SVD of A
and then applying soft thresholding on the singular values
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A Key Theorem

Theorem

Let C = UΣV T be the SVD of C. Then

Tλ(C ) ≡ arg min
W

{
1

2
||W − C ||2F + λ||W ||∗

}

is given by
Tλ(C ) = UΣλV T ,

where Σλ is diagonal with

(Σλ)ii = max{0,Σii − λ}
︸ ︷︷ ︸

soft thresholding

.
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The Extended Gradient Algorithm

Initialize W0 ∈ R
m×n

Iterate:

1 Choose an appropriate step size sk

2 Gradient descent: W̃k = Wk−1 − sk ▽ f (Wk−1)

3 Soft thresholding: Wk = Tλ(W̃k )
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The Step Size

Start from an initial value, decrease by a multiplicative factor γ < 1,
until a condition is satisfied

If sk < 1
L
⇒ the condition is satisfied

At step t, we use st−1 as initial value
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Convergence Analysis

Theorem

Let {Wk} be the sequence generated by the Extended Gradient Algorithm.
Then for any k ≥ 1 we have

F (Wk) − F (W ∗) ≤ γL||W0 − W ∗||2F
2k

= O(
1

k
),

where W ∗ = arg minW F (W ).
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Nesterov’s Acceleration Technique

The convergence rate of gradient descent for smooth problems is not
optimal

The optimal convergence rate can be achieved by the Nesterov’s
extrapolation technique (Nesterov 1983, Nesterov 2003)

Define two sequences Wk and Zk

Zk+1 is affine combination of Wk and Wk−1

Perform gradient descent at Zk+1 instead of Wk

Wk-1

Wk

Wk+1

Zk+1

Wk+1
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The Accelerated Gradient Algorithm

Initialize W0,Z1 ∈ R
m×n, α1 = 1

Iterate:

1 Choose an appropriate step size sk

2 Gradient descent: W̃k = Zk − sk ▽ f (Zk)

3 Soft thresholding: Wk = Tλ(W̃k )

4 αk+1 =
1+
√

1+4α2
k

2 compute coefficient

5 Zk+1 = Wk +
(

αk−1
αk+1

)

(Wk − Wk−1) extrapolation
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Convergence Analysis

Theorem

Let {Wk} and {Zk} be the sequences generated by the Accelerated
Gradient Algorithm. Then for any k ≥ 1 we have

F (Wk) − F (W ∗) ≤ 2γL||W0 − W ∗||2F
(k + 1)2

= O(
1

k2
).
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Evaluation of Efficiency

Use multi-task formulation for evaluation

Extended Gradient Method (EGM)
Accelerated Gradient Method (AGM)
Multi-task Feature Learning (MFL) (Argyriou et al. 2008)

Data set yeast letters digits dmoz
Percentage 5% 10% 5% 10% 5% 10% 5% 10%

EGM 2.24 3.37 4.74 5.67 62.51 29.59 133.21 146.58
AGM 0.34 0.49 0.62 0.91 2.41 2.39 1.59 1.42
MFL 2.33 17.27 2.49 9.66 15.50 42.64 74.24 31.49
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Evaluation of Convergence
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Conclusion and Discussion

Propose two algorithms for solving trace norm regularized problems

Extended Gradient Method
Accelerated Gradient Method

O(
1√
k

) ⇒ O(
1

k
) ⇒ O(

1

k2
)

Future work:

Approximate SVD to reduce computational cost
Adapt the algorithms to constrained problems:

min ||W ||
∗

s.t. affine constraints
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Thank you!
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