Framework	Approximation Error	Constraint Expansion	Relaxed ALP	Results	Conclusion

Constraint Relaxation in Approximate Linear Programs

Marek Petrik, Shlomo Zilberstein University of Massachusetts Amherst

June 16, 2009

A			000	000	
Approx	imate Linear F	rogramming			

- Value function approximation in large Markov decision problems
- Properties:
 - + Better convergence properties than other algorithms
 - + Easier to analyze
 - Inferior empirical performance
- Goals:
 - Identify why ALP under-performs
 - Automatically improve the performance

000	0000000		000	000	Conclusion
Eramowork	Approximation Error	Constraint Expansion	Polovod ALP	Doculto	Conclusion

Blood Inventory Management Problem

- Managing inventory of blood
- Objectives:
 - Minimize **shortage** demand that is not satisfied
 - Maximize utilization amount of blood used before it perishes
- Challenging optimization problem:
 - Continuous action space
 - 48-dimensional continuous state space

Framework	Approximation Error	Constraint Expansion	Relaxed ALP	Results	Conclusion

- 2 Approximation Error
- 3 Constraint Expansion

4 Relaxed ALP

Framework	Approximation Error	Constraint Expansion	Relaxed ALP	Results	Conclusion

- 2 Approximation Error
- 3 Constraint Expansion

4 Relaxed ALP

Framework ●00	Approximation Error	Constraint Expansion	Relaxed ALP 000	Results 000	Conclusion
Problem	Framework				

Markov decision process:

- States: \mathcal{S} , including goal state
- Actions: ${\cal A}$
- **Transition function**: $p(s_2 | s_1, a) probability of transition from <math>s_1$ to s_2 with action a
- **Reward function**: r(s, a) for state *s* and action *a*

Objective:

- $\bullet\,$ Start with an initial state $\sigma\,$
- Maximize discounted reward:

$$\mathbf{E}_{s_0}\left[\sum_{i=0}^{\infty} \gamma^i R_i\right] = \mathbf{E}_{s_0}\left[R_0 + 0.9R_1 + 0.9^2R_2 + 0.9^3R_3 + \ldots\right]$$

Framework 0●0	Approximation Error	Constraint Expansion	Relaxed ALP 000	Results 000	Conclusion
Linear P	rogram Form	ulation			

• Linear program:

$$\min_{v} c^{\mathsf{T}}v$$

s.t. $Av \ge b$

• Constraints:

$$\begin{aligned} \mathbf{v}(s') &\geq \gamma \sum_{s \in \mathcal{S}} p\left(s \,\middle|\, s', \mathbf{a}_1\right) \mathbf{v}(s) + \mathbf{r}(s', \mathbf{a}_1) \\ \mathbf{v}(s') &\geq \gamma \sum_{s \in \mathcal{S}} p\left(s \,\middle|\, s', \mathbf{a}_2\right) \mathbf{v}(s) + \mathbf{r}(s', \mathbf{a}_2) \end{aligned}$$

• Example:

 $v(s_2) \geq \gamma v(s_3) + r(s_2, a_1)$

Framework 00●	Approximation Error	Constraint Expansion	Relaxed ALP 000	Results 000	Conclusion
Approxir	nate Linear P	Program Form	ulation		

• Linear program:

 $\min_{\mathbf{v}} \quad c^{\mathsf{T}}\mathbf{v} \\ \text{s.t.} \quad A\mathbf{v} \ge b$

• Reduce the number of variables in the LP

- Consider an approximation basis: *M*, as a matrix Example
- Value function from span(M): v = Mx
- Columns represent features
- Approximate linear program: Example

 $\min_{x} c^{\mathsf{T}} M x \\ \text{s.t.} A M x \ge b$

• Many constraints - reduce by sampling

Framework	Approximation Error	Constraint Expansion	Relaxed ALP	Results	Conclusion

Constraint Expansion

4 Relaxed ALP

Framework	Approximation Error	Constraint Expansion	Relaxed ALP	Results	Conclusion
000	•000000	000	000	000	
Approxi	mation Error				

Approximation error:

- Representational Limited approximation features (basis) M
- Iransitional Limitation of ALP formulation
- Sampling Limited number of sampled constraints

Framework 000	Approximation Error 000000	Constraint Expansion	Relaxed ALP 000	Results 000	Conclusion
Transiti	onal Error Bo	unds			

- ALP bounds in theory better than other algorithms
- Typical ADP Algorithms:

$$\limsup_{k\to\infty} \|\mathbf{v}^* - \mathbf{v}_k\|_{\infty} \leq \limsup_{k\to\infty} \frac{2}{(1-\gamma)^2} \|\tilde{\mathbf{v}}_k - \mathbf{v}_k\|_{\infty}$$

• ALP converges:

$$\|\mathbf{v}^* - \tilde{\mathbf{v}}\|_1 \leq \frac{2}{1-\gamma} \min_{\mathbf{x}} \|\mathbf{v}^* - M\mathbf{x}\|_{\infty}$$

- The error may be too large anyway high discount factor
- When $\gamma \to 1$ then $\frac{2}{1-\gamma} \to \infty$
- Better bounds with structure, but hard to guarantee Structure

Framework 000	Approximation Error	Constraint Expansion	Relaxed ALP 000	Results 000	Conclusion
Chain P	roblem				

• Chain problem:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 \\ \end{pmatrix}$$

• Approximation basis:

Chain D		Decult			
	000000				
Framework	Approximation Error	Constraint Expansion	Relaxed ALP	Results	Conclusion

Chain Problem: ALP Result

Framework 000	Approximation Error	Constraint Expansion	Relaxed ALP 000	Results 000	Conclusion
Courses					

Causes of Large Transitive Error

• Presence of a virtual loop

- No loop in original problem
- Loop when approximated
- Assume $v(s_6) = 0$
- Precise LP constraints:

$$v(s_5) \ge \gamma v(s_6) + r$$
$$v(s_5) = r$$

- In the approximation: $v(s_5) = v(s_6)$
- Approximate LP constraints:

$$x \ge \gamma x + r$$
$$v(s_5) = x \ge \frac{1}{1 - \gamma}r$$

- Dual variable y corresponds to "discounted visitation frequencies"
- Chain example:

Use dual variables to eliminate virtual loops

Framework	Approximation Error	Constraint Expansion	Relaxed ALP	Results	Conclusion

Framework 000	Approximation Error	Constraint Expansion ●00	Relaxed ALP 000	Results 000	Conclusion
Expandi	ng Constraint	S			

- Roll out constraints
- Can "break" virtual loops

Framework 000	Approximation Error	Constraint Expansion ○●○	Relaxed ALP 000	Results 000	Conclusion
Error Bo	ounds				

- Assume that $\mathbf{1} \in \mathsf{span}\,M$
- Constraint expansion lowers the discount factor

Theorem

Let
$$\tilde{v}_t$$
 be a solution of a *t*-step ALP:

$$\|\tilde{\boldsymbol{v}}_t - \boldsymbol{v}^*\|_{1,c} \leq \frac{2}{1 - \gamma^t} \min_{\boldsymbol{x}} \|\boldsymbol{v}^* - \boldsymbol{M}\boldsymbol{x}\|_{\infty}$$

Framework 000	Approximation Error	Constraint Expansion	Relaxed ALP 000	Results 000	Conclusion
Adaptive	e Constraint E	Expansion			

- Too many constraints to expand:
 - Computational problem
 - Number of samples to bound the approximation error
- Expand only some constraints using *y*
- Solution of ALP: v
- Solution of expanded ALP: \bar{v}

Theorem

Improvement from constraint expansion is at most:

$$\|\mathbf{v} - \mathbf{v}^*\|_{1,c} - \|\mathbf{\bar{v}} - \mathbf{v}^*\|_{1,c} \le \frac{\|[A\mathbf{v} - b]_+\|_{\infty}}{1 - \gamma} \|\mathbf{y}^\mathsf{T} A\|_1$$

Framework	Approximation Error	Constraint Expansion	Relaxed ALP	Results	Conclusion

- 2 Approximation Error
- 3 Constraint Expansion

4 Relaxed ALP

Deleved	A manual dimension	Lines Due au	o 100		
000	0000000	000	000	000	
Framework	Approximation Error	Constraint Expansion	Relaxed ALP	Results	Conclusion

Relaxed Approximate Linear Program

- A few constraints may cause large error
- Allow limited constraint violation
- Original linear program:

 $\min_{\mathbf{v}} \quad c^{\mathsf{T}}\mathbf{v} \\ \text{s.t.} \quad A\mathbf{v} \ge b$

• Penalty for constraint violation: d

$$\min_{\mathbf{v}} \quad \mathbf{c}^{\mathsf{T}}\mathbf{v} + \mathbf{d}^{\mathsf{T}} \left[\mathbf{b} - \mathbf{A}\mathbf{v} \right]_{+}$$

Framework 000	Approximation Error	Constraint Expansion	Relaxed ALP ○●○	Results 000	Conclusion
Dual Mo	tivation				

- Offending constraints indicated by large *y*
- Relaxed ALP: $\min_{v} c^{\mathsf{T}}v + d^{\mathsf{T}}[b - Av]_{+}$
- Dual of relaxed ALP: $\max_{y} \quad b^{\mathsf{T}}y$ s.t. $A^{\mathsf{T}}y = c$ $y \ge \mathbf{0}$ $y \le d$

5

2 3

Numbe	r of Violated	Constraints			
000	000000	000	000	000	
Framework	Approximation Error	Constraint Expansion	Relaxed ALP	Results	Conclusion

- Assume that $\mathbf{1} \in \mathsf{span}\,M$
- Violated constraints: I_V
- Active constraints: I_A

Theorem

Let $d(\cdot)$ denotes the sum of the weights on the set of constraints:

$$egin{aligned} d(I_V) &\leq rac{1}{1-\gamma} \ d(I_A) + d(I_V) &\geq rac{1}{1-\gamma} \end{aligned}$$

• Guarantee that at most k constraints are violated More Bounds

$$d>rac{1}{(k+1)(1-\gamma)}\mathbf{1}$$

Framework	Approximation Error	Constraint Expansion	Relaxed ALP	Results	Conclusion

- 2 Approximation Error
- 3 Constraint Expansion

4 Relaxed ALP

Framework 000	Approximation Error	Constraint Expansion	Relaxed ALP 000	Results ●00	Conclusion
Chain					

- Underpowered car must climb a hill
- 2-dimensional state space
- Total constraints: 9000

- Concave value function
- Piece-wise linear approximation
- ALP is an upper bound on the derivative of the value function

Framework 000	Approximation Error	Constraint Expansion	Relaxed ALP 000	Results 000	Conclusion
Conclus	ion				

- Approximation error in ALP
 - Representational error
 - Transitional error
 - Sampling error
- Reduction of the transitional error:
 - Constraint expansion
 - Relaxed linear program formulation
- Can significantly improve the ALP performance

Domain Samples

Solution is based on samples of the domain

• Arbitrary goal-terminated paths:

$$(\sigma, a_1), (s_2, a_1), (s_3, a_2), \tau$$

• Optimal goal-terminated paths:

$$(\sigma, a_2), (s_3, a_2), \tau$$

• Transitional samples:

 (s_2, a_1, s_2)

• Expected transitional samples (model) :

 $(s_2, a_1, \mathsf{E}[s_2])$

Blood Inventory Management: Greedy Solution

- Finding the best way of using a given inventory single step
- Actions:
 - y_{ij} Type *i* used to satisfy demand for type *j*
 - *z_i* Type *i* that is retained in inventory
- Solved as a simple flow problem:

$$\begin{array}{ll} \max_{y,z} & \sum_{ij} c_{ij} y_{ij} \\ \text{s.t.} & \sum_{j \in \mathcal{T}} y_{ij} + z_k \leq C(i) \quad \forall i \in \mathcal{T} b \\ & \sum_i y_{ij} \leq D(j) \quad \forall j \in \mathcal{T} \\ & y_{ij}, z_i \geq 0 \quad \forall i,j \in \mathcal{T} \end{array}$$

Lyapunov Hierarchy [?]

Definition

Let $u^1 \dots u^k \ge 0$ be a set of vectors, and A and b be partitioned into A_i and b_i respectively. This set of vectors is called a Lyapunov vector hierarchy if there exist $\beta_i < 1$ such that:

$$\begin{array}{rcl} A_i u^i & \leq & \beta_i u^i \\ A_j u^i & \leq & 0 & \forall j < i \end{array}$$

Theorem

Assume that there exists a Lyapunov hierarchy $u^1 \dots u^l \in \text{span}(M)$. Then:

$$\|\tilde{\mathbf{v}}-\mathbf{v}^*\|_{\infty} \leq \left(1+\prod_{i=1}^l \frac{(1+\alpha\gamma)\max_k u^i(k)}{(1-\gamma\beta_i)\min_k u^i_i(k)}\right) 2\min_x \|\mathbf{v}^*-M\mathbf{x}\|_{\infty}.$$

Hard to ensure the hierarchy

Tetris: Effect of Discount Factor [?]

Works in problems with sparse rewards

Direct Formulation:

 $v(s) \geq v^*(s)$

- Impractical in stochastic problems
- Many constraints per state: $|\mathcal{A}|^h$
- Large sampling error
- + Small transitional error
 - A hybrid approach?

Transitional Formulation:

$$v(s') \ge \gamma \sum_{s \in S} p(s \mid s', a) v(s) + r(s', a)$$

- + Practical in stochastic problems
- + Constraints per state: $|\mathcal{A}|$
- + Small sampling error
- Large transitional error

Use value function v to act:

- Greedy
 - One step lookahead
 - Fixed solution time
 - Solution quality depends on value function v
- 2 A*
 - Only Deterministic problems
 - Fixed solution quality (optimal if v is admissible)
 - Solution time depends on value function v
- 3 LAO*
 - Extends A* to stochastic problems
- Tradeoff
 - Minimize time complexity, satisfying time bound

Blood Inventory Management: MDP Formulation

- Stage = week
- State: = (Inventory, Demand)
- Actions: How to satisfy supply with
 - Blood type
 - Blood amount
- Transition function:
 - Old blood discarded
 - 2 New stochastic demand
 - Stochastic supply added to inventory

Reward function:

- Linear contribution per unit of satisfied blood demand
- Multiple levels of demand priority

Approximation Basis in Blood Inventory Management

- Defines a set of values for each post-decision state inventory.
- Structure:
 - Piece-wise linear
 - Fixed regions of linearity

	Feature A	Feature B
A= <mark>0</mark> , B=1	0	1
A= <mark>0</mark> , B= <mark>2</mark>	0	2
A=1, B=0	1	0
A=2, B=0	2	0
A=1, B=1	1	1

• Greedy step be formulated as a flow problem (LP)

Example value function:

Blood Inventory Management: ALP

• ALP Constraints:

$$\begin{aligned} \mathbf{v}(s') &\geq \gamma \sum_{s \in \mathcal{S}} p\left(s \,\middle|\, s', \mathbf{a}_1\right) \mathbf{v}(s) + \mathbf{r}(s', \mathbf{a}_1) \\ \mathbf{v}(s') &\geq \gamma \sum_{s \in \mathcal{S}} p\left(s \,\middle|\, s', \mathbf{a}_2\right) \mathbf{v}(s) + \mathbf{r}(s', \mathbf{a}_2) \end{aligned}$$

• But
$$|\mathcal{A}| = \infty$$
; use:

$$v(s_1) \geq \max_{a \in \mathcal{A}} \sum_{s \in \mathcal{S}} p\left(s \mid s', a\right) v(s) + r(s', a)$$

- Solutions:
 - Use flow LP
 - Use constraint generation LP to find the most violated constraint

State Of the Art in Solution Techniques

- Operations research:
 - Mature field
 - Focus on specialized problems
 - Mathematical optimization
- Reinforcement learning:
 - Many successful applications
 - Approximate dynamic programming
 - Often need extensive tweaking
- Planning:
 - Branch and bound
 - Heuristic search
- Solved approximately

• Research Objectives:

- 2 Develop general methods
- Oevelop robust methods that rely on little tuning

Approximation Basis Structure

- May guarantee that the the transitive error is small
- Examples:
 - $\bullet \quad \text{Simple structure: } \mathbf{1} \in \mathsf{span} \ M$
 - Smoothness structure: Lyapunov hierarchy [?] [Forma]
- Structure hard to guarantee in complex problems
- Solutions
 - Expand/roll-out selected constraints
 - Solve a relaxed linear program

Constraint Estimation: Blood Inventory Management

40 samples per constraint

- Reduce constraint estimation error
- Exploit:
 - Inventory influence mostly independent of the demand and supply
- $\bullet~$ Use $\omega~$ to denote the stochastic supply/demand
- f(s, ω) = the state that follows from s given action a and demand/supply ω

Synchronized Sampling

- Sampled supply/demand: $\omega_1^1, \omega_2^1, \ldots, \omega_1^2, \omega_2^2, \ldots$
- Standard constraint sampling

$$A = \begin{pmatrix} 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ & \vdots & \\ 0 & 0 & 0 & \cdots 1 \end{pmatrix} - \gamma \frac{1}{n} \begin{pmatrix} - & \sum_{j=1}^{n} v(f(s_{1}, \omega_{j}^{1})) & - \\ - & \sum_{j=1}^{n} v(f(s_{2}, \omega_{j}^{2})) & - \\ - & \vdots & - \end{pmatrix}$$

• Synchronized constraint sampling

$$A = \begin{pmatrix} 1 & 0 & 0 & \dots \\ 0 & 1 & 0 & \dots \\ & \vdots & \\ 0 & 0 & 0 & \dots 1 \end{pmatrix} - \gamma \frac{1}{n} \sum_{j=1}^{n} \begin{pmatrix} - & v(f(s_1, \omega_j)) & - \\ - & v(f(s_2, \omega_j)) & - \\ - & \vdots & - \end{pmatrix}$$

Theorem

Also let $\epsilon_a = ||A_1M - A_2M||_{1,\infty}$ and $\epsilon_b = ||b_1 - b_2||_{\infty}$. Assuming that $A_1\mathbf{1} = A_2\mathbf{1} = (1 - \gamma)\mathbf{1}$ then:

$$\|\tilde{\mathbf{v}}_1 - \tilde{\mathbf{v}}_2\| \leq rac{\epsilon_{\boldsymbol{a}}\hat{\mathbf{x}}}{1 - \gamma} + rac{\epsilon_b}{1 - \gamma}.$$

- Omitting constraints that are similar does not change the solution
- May use similarity of the transitions

• Constraints in ALP:

$$v(s') \ge \gamma \sum_{s \in S} p(s | s', a_1) v(s) + r(s', a_1) \quad \forall s \in S$$

- Sample states from the transition probability $s \rightarrow s_1, s_2, \ldots, s_n$
- Constraint:

$$v(s) \ge \gamma P_a v + r_a = \gamma \mathsf{E}_S \left[v(S) \right] + r_a$$
$$\approx \gamma \frac{1}{n} \sum_{j=1}^n v(s_j) + r_a$$

- For sufficiently large *n*, the error is sufficiently small
- The number of samples depends on the number of features in the ALP

Theorem

Let v_1 be the solution of the true ALP_1 and let v_2 be the solution of the sampled ALP_q . Then:

$$\mathbf{P}\left[\|v_1 - v_2\|_{1,c} \ge \epsilon\right] \le nm \exp\left(-\frac{2q\epsilon^2 m^2(1-\gamma)^2}{\hat{x}^2}\right) + n\exp\left(-\frac{2q\epsilon^2(1-\gamma)^2}{\|r\|_{\infty}^2}\right),$$

where $\hat{x} \ge |x(i)|$ for all *i* assuming that $||M||_{\infty} = 1$.

Total Constraint Violation

Let

$$\min_{\boldsymbol{\nu}\in \operatorname{span}\boldsymbol{M}} \|\boldsymbol{\nu}-\boldsymbol{\nu}^*\|_{\infty} \leq \epsilon$$

- Minimizer \hat{v}
- Constraint violation penalty:

$$d = y^* + \Delta d$$

Theorem

Let \tilde{v} be the optimal solution of the relaxed ALP, then:

$$\|[b - A\tilde{v}]_+\|_{1,\Delta d} \leq (2 + \Delta d^{\mathsf{T}}\mathbf{1})\epsilon.$$

- If $v^* \in \operatorname{span} M$ then $\tilde{v} = v^*$
- Proof differs from other ALP bounds
- Cannot use that \tilde{v} is an upper bound on v^*

• *L*₁ minimization:

- Problem with the nonlinearity of the absolute value
- Possible when $v \ge v^*$:

$$\|v - v^*\|_1 = \sum_{s \in \mathcal{S}} |v(s) - v^*(s)| = \sum_{s \in \mathcal{S}} v(s) - v^*(s)$$

• Constants can be ignored:

$$\arg\min_{v}\sum_{s\in\mathcal{S}}v(s)-v^*(s)=\arg\min_{v}\sum_{s\in\mathcal{S}}v(s)$$

Possible to bound the policy error

- Demand and supply of blood are stochastic
- Blood is perishable
- Multiple blood types are compatible
- Blood type distribution: Supply \neq Demand
- Manage how much of which blood is:
 - Used to satisfy the demand
 - 2 Retained in inventory
- Challenging optimization problem:
 - Continuous action space
 - 48-dimensional continuous state space
 - High level of stochasticity

Mountain Car Value Function

Expanded 10 steps:

