Constraint Relaxation in Approximate Linear
Programs

Marek Petrik, Shlomo Zilberstein
University of Massachusetts Amherst

June 16, 2009



Approximate Linear Programming

@ Value function approximation in large Markov decision
problems
o Properties:
Better convergence properties than other algorithms
Easier to analyze
— Inferior empirical performance
e Goals:

@ Identify why ALP under-performs
@ Automatically improve the performance



Blood Inventory Management Problem

@ Managing inventory of blood
@ Objectives:
o Minimize shortage — demand
that is not satisfied
o Maximize utilization — amount
of blood used before it perishes
@ Challenging optimization problem:
o Continuous action space
e 48-dimensional continuous state
space
o High level of stochasticity
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Problem Framework

Markov decision process:
o States: S, including goal state
@ Actions: A
e Transition function: p(s;|si,a) - o

probability of transition from s; to a a
sp with action a

e Reward function: r(s, a) for state 52@\

s and action a
Objective:
@ Start with an initial state o

O

@ Maximize discounted reward:

Es, [Z fyiR;] = Eq [Ro+0.9R; + 0.9°R, + 0.9°Rs + ... ]
i=0
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Linear Program Formulation

@ Linear program:

T

min ¢ v
v
st. Av>b
o Constraints: o
al an
>’yZp s’ a1) v(s) + r(s', a1)
seS 52©\l>
>fyZp ‘S az +I’(5 a2) S3

seS

o Example:
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Approximate Linear Program Formulation

@ Linear program:
min c'v
v
st. Av>b
@ Reduce the number of variables in the LP

o Consider an approximation basis: M, as a matrix
e Value function from span(M): v = Mx
o Columns represent features

@ Approximate linear program:

min  ¢' Mx
X

st. AMx>b

@ Many constraints — reduce by sampling
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© Approximation Error



Approximation Error
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Approximation Error

Approximation error:
@ Representational — Limited approximation features (basis) M
@ Transitional — Limitation of ALP formulation

© Sampling — Limited number of sampled constraints

Transitional

Representational

Sampling




Approximation Error
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Transitional Error Bounds

ALP bounds in theory better than other algorithms
Typical ADP Algorithms:

2
l i <li s || —
imsup ||[v* — vk|loo < limsup (1_7)2”Vk Vi oo

—00 —00

ALP converges:

o 2
v = 7|1 < 1—v min [v* — Mx||so

The error may be too large anyway — high discount factor

Whenfy—>1then%—>oo

Better bounds with structure, but hard to guarantee



Approximation Error
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Chain Problem

@ Chain problem:
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@ Approximation basis:
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Approximation Error
[ele)eY Yolole}

Chain Problem: ALP Result
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Approximation Error
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Causes of Large Transitive Error

@ Presence of a virtual loop

o No loop in original problem : .
o Loop when approximated g EIRR s
s N
@ Assume v(sg) =0 SRR
@ Precise LP constraints: T s

@ In the approximation: v(s5) = v(sg)

o Approximate LP constraints: ‘

X2>yx+r O O

e >
V(S5 ) X ~ I




Approximation Error
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Loops and Dual Variables

Primal: Dual:
min c'v max bTy
v y
st. Av>b st. Aly=c
y=>0

@ Dual variable y corresponds to “discounted visitation
frequencies”
@ Chain example:

20
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Virtual Loops and Dual Variables

True y
20
. oBe
> 10 Ss Se
5
0

State

Approximate y
. O O
15 Ssg Sg
> 10
5 5
0 4 ~‘n\
1 2 3 4 5 6 7 3o BRI mras
State Feaure 2
2| o -
b R i SR SR T -“-

Use dual variables to eliminate virtual loops DR
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Constraint Expansion
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Expanding Constraints

@ Roll out constraints

o Can “break” virtual loops




Constraint Expansion
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Error Bounds

@ Assume that 1 € span M ] )
] i Error reduction with t:
o Constraint expansion lowers the .

discount factor O‘B
g
Z 06
<
*
Let v be a solution of a t-step ALP: L
0.2
- . | ! |
HVt -V HLC S 1 — "}/t mXIn ||V - MX”OO 0 2 |;><panAsiDnStet?’s_I A )




Constraint Expansion
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Adaptive Constraint Expansion

@ Too many constraints to expand:

@ Computational problem
@ Number of samples to bound the
approximation error

20

15

> 10

@ Expand only some constraints

using y ,
@ Solution of ALP: v State
@ Solution of expanded ALP: v

Improvement from constraint expansion is at most:

[ [Av — b] [loo
—;HyTAlh

I = vl =17 = iz < S
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Relaxed ALP
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Relaxed Approximate Linear Program

o A few constraints may cause large True
error “

o Allow limited constraint
violation

12 3 4 5 6 7
state

Approximate

@ Original linear program:

min c'v s
v

st. Av>b

12 3 4 5 6 7
State

No Constraint 5

@ Penalty for constraint violation: d

min ¢'v4dT[b— Av],

1111111



Relaxed ALP
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Dual Motivation

o Offending constraints indicated by True
large y N
o Relaxed ALP: E
min ch+dT[b—Av]+ AT
v

Approximate

@ Dual of relaxed ALP:
max b' T I

st. Aly=c No Constraint 5

1111111



Relaxed ALP
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Number of Violated Constraints

@ Assume that 1 € span M
@ Violated constraints: Iy
@ Active constraints: /4

Let d(-) denotes the sum of the weights on the set of constraints:

d(ly) <

d(IA) + d(/\/) >

@ Guarantee that at most k constraints are violated

1

e na )t
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Mountain Car

MOUNTAIN CAR Goal
@ Underpowered car must climb a hill
@ 2-dimensional state space /7
@ Total constraints: 9000 /

L1 Error Bound
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Expanded Constraints
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Relaxed ALP: Blood Inventory Management

@ Concave value function

Results: @ Piece-wise linear
. approximation
@ ALP is an upper bound on
8 . .
the derivative of the value
6 function
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Conclusion

Conclusion

@ Approximation error in ALP
o Representational error
e Transitional error
e Sampling error
@ Reduction of the transitional error:
e Constraint expansion
o Relaxed linear program formulation

@ Can significantly improve the ALP performance



Domain Samples

Solution is based on samples of the
domain

o Arbitrary goal-terminated paths:
(O-’ 31)7(52731)7(53732)77— o
@ Optimal goal-terminated paths:

(0,a2), (s3,a2), 7 52©\z>

@ Transitional samples:

(52, a1,%) oL

@ Expected transitional samples
(model) :

(52,1, E[s2])



Blood Inventory Management: Greedy Solution

@ Finding the best way of using a
given inventory — single step
@ Actions:

o y;j — Type i used to satisfy
demand for type j

o z; — Type i that is retained in
inventory

@ Solved as a simple flow problem:
st. Y yj+z<C(i) VieTh
JET
> vy <D() VjieT

i
y,-j,z,-ZO Vi,jET




Lyapunov Hierarchy [?]

Definition

Let ul...uk > 0 be a set of vectors, and A and b be partitioned
into A; and b; respectively. This set of vectors is called a Lyapunov
vector hierarchy if there exist 3; < 1 such that:

Au' < B
Ay < 0 Vj<i

Theorem

Assume that there exists a Lyapunov hierarchy
ul...u' € span(M). Then:

!
" (1 + ary) max, u'(k) .
Ve < (1 2 * — Mx]|oo.
K7 v||oo_< +H () miny o108 min ||v x| oo

Hard to ensure the hierarchy



ris: Effect of Discount Factor [?]
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Discount Factor Biasing

Works in problems with sparse rewards
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Constraint Formulation Properties

Direct Formulation: Transitional Formulation:
v(s) = v(s) v(s') > fyz p(s|s’,a)v(s)+r(s',a)
seS

— Impractical in stochastic
Practical in stochastic

problems
— Many constraints per state: problems

1A Constraints per state: |.A|
— Large sampling error Small sampling error

Small transitional error — Large transitional error

A hybrid approach?



Online Solution Methods

Use value function v to act:
Q Greedy
e One step lookahead
o Fixed solution time
e Solution quality depends on value function v
Q A*
o Only Deterministic problems
o Fixed solution quality (optimal if v is admissible)
e Solution time depends on value function v
@ LAO*
o Extends A* to stochastic problems

Q@ Tradeoff

e Minimize time complexity, satisfying time bound



Blood Inventory Management: MDP Formulation

@ Stage = week
e State: = (Inventory, Demand)
@ Actions: How to satisfy supply

with Demant

e Blood type &
o Blood amount ) .
@ Transition function: = e
@ Old blood discarded [(As-H AB- ]
@ New stochastic demand IE E
© Stochastic supply added to & (o]
inventory po— p—

. o>

@ Reward function: :

Supply

o Linear contribution per unit of
satisfied blood demand
o Multiple levels of demand priority



Approximation Basis in Blood Inventory Management

Defines a set of values for each
post-decision state — inventory.

Structure:
o Piece-wise linear
o Fixed regions of linearity
M =
Feature A Feature B
A=0, B=1 0 1
A=0, B=2 0 2
A=1, B=0 1 0
A=2, B=0 2 0
A=1, B=1 1 1
Greedy step be formulated as a

flow problem

Example value function:

Linear regions

Arount bl ood type 0~ Amount bl ood type AB



Blood Inventory Management: ALP

@ ALP Constraints:

>72p |s',a1) v(s) + r(s', a1)
seS

>fyZp |’ a2) v(s) + r(s', a2)
seS

e But |A| = oo; use:

v(s1) > TE%Zp (s|s',a) v(s) + r(s', a)

seS

@ Solutions:
@ Use flow LP
@ Use constraint generation — LP to find
the most violated constraint



State Of the Art in Solution Techniques

@ Operations research:

e Mature field
e Focus on specialized problems
e Mathematical optimization

Reinforcement learning:
e Many successful applications
e Approximate dynamic programming
o Often need extensive tweaking

Planning:
e Branch and bound
e Heuristic search

Solved approximately
Research Objectives:

@ Better understand the tradeoffs involved in the approximation
@ Develop general methods
@ Develop robust methods that rely on little tuning



Approximation Basis Structure

@ May guarantee that the the
transitive error is small

o Examples:
© Simple structure: 1 € span M
@ Smoothness structure: Lyapunov Q
hierarchy [?] :Q
@ Structure hard to guarantee in AR
complex problems I /
@ Solutions g X

@ Expand/roll-out selected
constraints
@ Solve a relaxed linear program



Constraint Estimation: Blood Inventory Management

40 samples per constraint
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Synchronized Sampling

Reduce constraint estimation error
Exploit:
e Inventory influence mostly independent of the demand and
supply
Use w to denote the stochastic supply/demand

f(s,w) = the state that follows from s given action a and
demand/supply w



Synchronized Sampling

e Sampled supply/demand: w%,w%,...,w%,w%,...

@ Standard constraint sampling
010 ) i fC Thae) -
0 00 ...1 N N

@ Synchronized constraint sampling
1 00
010 ...
A et i —_ ’)/ 527 wj)



ALP Solution Robustness

Q@ ALP; = (c, A1, b1, M) with optimal solution vy
@ ALP, = (c, Az, ba, M) with optimal solution v

Also let €5 = ||AtM — AoM||1,00 and €p = ||b1 — bo||oc. Assuming
that A1l = A1 = (1 — )1 then:

€2X €p

[h — ¥ <

@ Omitting constraints that are similar does not change the
solution

@ May use similarity of the transitions



Constraint Estimation

@ Constraints in ALP:

>72p s ai)v(s)+r(s,a1) VseS
seS

Sample states from the transition probability s — s1,,...,5,
Constraint:

v(s) > yPav + ra = yEs [v(S)] + ra

1 n
~ yz z; v(sj) + ra
j:

For sufficiently large n, the error is sufficiently small

@ The number of samples depends on the number of features in
the ALP



Constraint Estimation Error

(Theorem |

Let v1 be the solution of the true ALP; and let v» be the solution

of the sampled ALP,. Then:

2 2 21_ 2
Pllv — vallie > ] < nmexp <_ S k) >+
X
2g€e3(1 — ~)?
+nexp <_q€(2’y)>7
[Irll%

where X > |x(i)| for all i assuming that ||M||~ = 1.




Total Constraint Violation

o Let

min_ |[v—v*e <€
vEspan M

@ Minimizer v
o Constraint violation penalty:

d=y*+Ad

Let v be the optimal solution of the relaxed ALP, then:

1~ AVl lha0 < (2 + AdT1)e.

o If v* € span M then V = v*
@ Proof differs from other ALP bounds
@ Cannot use that ¥ is an upper bound on v*



Objective Function

@ [ minimization:
e Problem with the nonlinearity of the absolute value
o Possible when v > v*:

v =villi = v(s) = v (s)| = Y v(s) = v*(s)

seS seES

o Constants can be ignored:
argmlnz _argmmz

@ Possible to bound the policy error



Considerations

Demand and supply of blood are stochastic
Blood is perishable

Multiple blood types are compatible

Blood type distribution: Supply # Demand

® 6 6 o o

Manage how much of which blood is:

@ Used to satisfy the demand
© Retained in inventory

©

Challenging optimization problem:
o Continuous action space
e 48-dimensional continuous state space
o High level of stochasticity




Mountain Car Value Function

Unexpanded: Expanded 10 steps:

-01 -2
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