Constraint Relaxation in Approximate Linear Programs

Marek Petrik, Shlomo Zilberstein
University of Massachusetts Amherst

June 16, 2009

Approximate Linear Programming

- Value function approximation in large Markov decision problems
- Properties:
+ Better convergence properties than other algorithms
+ Easier to analyze
- Inferior empirical performance
- Goals:
(1) Identify why ALP under-performs
(2) Automatically improve the performance

Blood Inventory Management Problem

- Managing inventory of blood
- Objectives:
- Minimize shortage - demand that is not satisfied
- Maximize utilization - amount of blood used before it perishes
- Challenging optimization problem:
- Continuous action space
- 48-dimensional continuous state space
- High level of stochasticity

(1) Framework
(2) Approximation Error
(3) Constraint Expansion

4 Relaxed ALP
(5) Results
(2) Approximation Error
(3) Constraint Expansion

4 Relaxed ALP
(5) Results

Problem Framework

Markov decision process:

- States: \mathcal{S}, including goal state
- Actions: \mathcal{A}
- Transition function: $p\left(s_{2} \mid s_{1}, a\right)$ probability of transition from s_{1} to s_{2} with action a
- Reward function: $r(s, a)$ for state s and action a

Objective:

- Start with an initial state σ
- Maximize discounted reward:

Blood Management

$$
\mathbf{E}_{s_{0}}\left[\sum_{i=0}^{\infty} \gamma^{i} R_{i}\right]=\mathbf{E}_{s_{0}}\left[R_{0}+0.9 R_{1}+0.9^{2} R_{2}+0.9^{3} R_{3}+\ldots\right]
$$

Linear Program Formulation

- Linear program:

$$
\begin{array}{ll}
\min _{v} & c^{\top} v \\
\text { s.t. } & A v \geq b
\end{array}
$$

- Constraints:

$$
\begin{aligned}
& v\left(s^{\prime}\right) \geq \gamma \sum_{s \in \mathcal{S}} p\left(s \mid s^{\prime}, a_{1}\right) v(s)+r\left(s^{\prime}, a_{1}\right) \\
& v\left(s^{\prime}\right) \geq \gamma \sum_{s \in \mathcal{S}} p\left(s \mid s^{\prime}, a_{2}\right) v(s)+r\left(s^{\prime}, a_{2}\right)
\end{aligned}
$$

- Example:

$$
v\left(s_{2}\right) \geq \gamma v\left(s_{3}\right)+r\left(s_{2}, a_{1}\right)
$$

Approximate Linear Program Formulation

- Linear program:

$$
\begin{array}{ll}
\min _{v} & c^{\top} v \\
\text { s.t. } & A v \geq b
\end{array}
$$

- Reduce the number of variables in the LP
- Consider an approximation basis: M, as a matrix Example
- Value function from $\operatorname{span}(M): v=M x$
- Columns represent features
- Approximate linear program:

$$
\begin{array}{ll}
\min _{x} & c^{\top} M x \\
\text { s.t. } & A M x \geq b
\end{array}
$$

- Many constraints - reduce by sampling

(1) Framework

(2) Approximation Error
(3) Constraint Expansion

4 Relaxed ALP
(5) Results

Approximation Error

Approximation error:
(1) Representational - Limited approximation features (basis) M
(2) Transitional - Limitation of ALP formulation
(3) Sampling - Limited number of sampled constraints

Transitional

Representational

Sampling

Transitional Error Bounds

- ALP bounds in theory better than other algorithms
- Typical ADP Algorithms:

$$
\limsup _{k \rightarrow \infty}\left\|v^{*}-v_{k}\right\|_{\infty} \leq \limsup _{k \rightarrow \infty} \frac{2}{(1-\gamma)^{2}}\left\|\tilde{v}_{k}-v_{k}\right\|_{\infty}
$$

- ALP converges:

$$
\left\|v^{*}-\tilde{v}\right\|_{1} \leq \frac{2}{1-\gamma} \min _{x}\left\|v^{*}-M x\right\|_{\infty}
$$

- The error may be too large anyway - high discount factor
- When $\gamma \rightarrow 1$ then $\frac{2}{1-\gamma} \rightarrow \infty$
- Better bounds with structure, but hard to guarantee

Chain Problem

- Chain problem:

- Approximation basis:

Chain Problem: ALP Result

Causes of Large Transitive Error

- Presence of a virtual loop
- No loop in original problem
- Loop when approximated
- Assume $v\left(s_{6}\right)=0$
- Precise LP constraints:

$$
\begin{aligned}
& v\left(s_{5}\right) \geq \gamma v\left(s_{6}\right)+r \\
& v\left(s_{5}\right)=r
\end{aligned}
$$

- In the approximation: $v\left(s_{5}\right)=v\left(s_{6}\right)$
- Approximate LP constraints:

$$
\begin{aligned}
x & \geq \gamma x+r \\
v\left(s_{5}\right)=x & \geq \frac{1}{1-\gamma} r
\end{aligned}
$$

Loops and Dual Variables

Primal:

$$
\begin{array}{ll}
\min _{v} & c^{\top} v \\
\text { s.t. } & A v \geq b
\end{array}
$$

Dual:

$$
\begin{array}{ll}
\max _{y} & b^{\top} y \\
\text { s.t. } & A^{\top} y=c \\
& y \geq 0
\end{array}
$$

- Dual variable y corresponds to "discounted visitation frequencies"
- Chain example:

Virtual Loops and Dual Variables

True y

Approximate y

Use dual variables to eliminate virtual loops

(1) Framework

(2) Approximation Error
(3) Constraint Expansion

4 Relaxed ALP
(5) Results

Expanding Constraints

- Roll out constraints
- Can "break" virtual loops

Error Bounds

- Assume that $\mathbf{1} \in \operatorname{span} M$
- Constraint expansion lowers the discount factor

Theorem

Let \tilde{v}_{t} be a solution of a t-step ALP:

$$
\left\|\tilde{v}_{t}-v^{*}\right\|_{1, c} \leq \frac{2}{1-\gamma^{t}} \min _{x}\left\|v^{*}-M x\right\|_{\infty}
$$

Error reduction with t :

Adaptive Constraint Expansion

- Too many constraints to expand:
(1) Computational problem
(2) Number of samples to bound the approximation error
- Expand only some constraints using y
- Solution of ALP: v

- Solution of expanded ALP: \bar{v}

Theorem

Improvement from constraint expansion is at most:

$$
\left\|v-v^{*}\right\|_{1, c}-\left\|\bar{v}-v^{*}\right\|_{1, c} \leq \frac{\left\|[A v-b]_{+}\right\|_{\infty}}{1-\gamma}\left\|y^{\top} A\right\|_{1}
$$

(1) Framework

(2) Approximation Error
(3) Constraint Expansion

4 Relaxed ALP

(5) Results

Relaxed Approximate Linear Program

- A few constraints may cause large error
- Allow limited constraint violation
- Original linear program:

$$
\begin{array}{ll}
\min _{v} & c^{\top} v \\
\text { s.t. } & A v \geq b
\end{array}
$$

- Penalty for constraint violation: d

$$
\min _{v} c^{\top} v+d^{\top}[b-A v]_{+}
$$

Approximate

No Constraint 5

Dual Motivation

- Offending constraints indicated by large y
- Relaxed ALP:

$$
\min _{v} c^{\top} v+d^{\top}[b-A v]_{+}
$$

- Dual of relaxed ALP: $\max b^{\top} y$
s.t. $A^{\top} y=c$

$$
\begin{aligned}
& y \geq \mathbf{0} \\
& y \leq d
\end{aligned}
$$

True

Approximate

No Constraint 5

Number of Violated Constraints

- Assume that $\mathbf{1} \in \operatorname{span} M$
- Violated constraints: I_{V}
- Active constraints: I_{A}

Theorem

Let $d(\cdot)$ denotes the sum of the weights on the set of constraints:

$$
\begin{aligned}
d\left(I_{V}\right) & \leq \frac{1}{1-\gamma} \\
d\left(I_{A}\right)+d\left(I_{V}\right) & \geq \frac{1}{1-\gamma}
\end{aligned}
$$

- Guarantee that at most k constraints are violated

$$
d>\frac{1}{(k+1)(1-\gamma)}^{1}
$$

(1) Framework

(2) Approximation Error
(3) Constraint Expansion

4 Relaxed ALP
(5) Results

Mountain Car

MOUNTAIN CAR

- Underpowered car must climb a hill
- 2-dimensional state space
- Total constraints: 9000

Relaxed ALP: Blood Inventory Management

Results:

- Concave value function
- Piece-wise linear approximation
- ALP is an upper bound on the derivative of the value function

Conclusion

- Approximation error in ALP
- Representational error
- Transitional error
- Sampling error
- Reduction of the transitional error:
- Constraint expansion
- Relaxed linear program formulation
- Can significantly improve the ALP performance

Domain Samples

Solution is based on samples of the domain

- Arbitrary goal-terminated paths:

$$
\left(\sigma, a_{1}\right),\left(s_{2}, a_{1}\right),\left(s_{3}, a_{2}\right), \tau
$$

- Optimal goal-terminated paths:

$$
\left(\sigma, a_{2}\right),\left(s_{3}, a_{2}\right), \tau
$$

- Transitional samples:

$$
\left(s_{2}, a_{1}, s_{2}\right)
$$

- Expected transitional samples (model) :

$$
\left(s_{2}, a_{1}, \mathbf{E}\left[s_{2}\right]\right)
$$

Blood Inventory Management: Greedy Solution

- Finding the best way of using a given inventory - single step
- Actions:
- $y_{i j}$ - Type i used to satisfy demand for type j
- z_{i} - Type i that is retained in inventory
- Solved as a simple flow problem:

$$
\begin{array}{cl}
\max _{y, z} & \sum_{i j} c_{i j} y_{i j} \\
\text { s.t. } & \sum_{j \in \mathcal{T}} y_{i j}+z_{k} \leq C(i) \quad \forall i \in \mathcal{T} b \\
& \sum_{i} y_{i j} \leq D(j) \quad \forall j \in \mathcal{T} \\
& y_{i j}, z_{i} \geq 0 \quad \forall i, j \in \mathcal{T}
\end{array}
$$

Lyapunov Hierarchy [?]

Definition

Let $u^{1} \ldots u^{k} \geq 0$ be a set of vectors, and A and b be partitioned into A_{i} and b_{i} respectively. This set of vectors is called a Lyapunov vector hierarchy if there exist $\beta_{i}<1$ such that:

$$
\begin{aligned}
A_{i} u^{i} & \leq \beta_{i} u^{i} \\
A_{j} u^{i} & \leq 0 \quad \forall j<i
\end{aligned}
$$

Theorem

Assume that there exists a Lyapunov hierarchy $u^{1} \ldots u^{\prime} \in \operatorname{span}(M)$. Then:

$$
\left\|\tilde{v}-v^{*}\right\|_{\infty} \leq\left(1+\prod_{i=1}^{l} \frac{(1+\alpha \gamma) \max _{k} u^{i}(k)}{\left(1-\gamma \beta_{i}\right) \min _{k} u_{i}^{i}(k)}\right) 2 \min _{x}\left\|v^{*}-M x\right\|_{\infty} .
$$

Hard to ensure the hierarchy

Tetris: Effect of Discount Factor [?]

Discount Factor Biasing

Works in problems with sparse rewards

Constraint Formulation Properties

Direct Formulation:

$$
v(s) \geq v^{*}(s)
$$

- Impractical in stochastic problems
- Many constraints per state: $|\mathcal{A}|^{h}$
- Large sampling error
+ Small transitional error
A hybrid approach?

Transitional Formulation:

$v\left(s^{\prime}\right) \geq \gamma \sum_{s \in \mathcal{S}} p\left(s \mid s^{\prime}, a\right) v(s)+r\left(s^{\prime}, a\right)$

+ Practical in stochastic problems
+ Constraints per state: $|\mathcal{A}|$
+ Small sampling error
- Large transitional error

Online Solution Methods

Use value function v to act:
(1) Greedy

- One step lookahead
- Fixed solution time
- Solution quality depends on value function v
(2) A^{*}
- Only Deterministic problems
- Fixed solution quality (optimal if v is admissible)
- Solution time depends on value function v
(3) LAO*
- Extends A* to stochastic problems
(9) Tradeoff
- Minimize time complexity, satisfying time bound

Blood Inventory Management: MDP Formulation

- Stage = week
- State: = (Inventory, Demand)
- Actions: How to satisfy supply with
- Blood type
- Blood amount
- Transition function:
(1) Old blood discarded
(2) New stochastic demand
(3) Stochastic supply added to inventory
- Reward function:
- Linear contribution per unit of
 satisfied blood demand
- Multiple levels of demand priority

Approximation Basis in Blood Inventory Management

- Defines a set of values for each post-decision state - inventory.
- Structure:
- Piece-wise linear
- Fixed regions of linearity
- $M=$

	Feature A	Feature B
$A=0, B=1$	0	1
$A=0, B=2$	0	2
$A=1, B=0$	1	0
$A=2, B=0$	2	0
$A=1, B=1$	1	1

Example value function:

- Greedy step be formulated as a flow problem LP

Blood Inventory Management: ALP

- ALP Constraints:

$$
\begin{aligned}
& v\left(s^{\prime}\right) \geq \gamma \sum_{s \in \mathcal{S}} p\left(s \mid s^{\prime}, a_{1}\right) v(s)+r\left(s^{\prime}, a_{1}\right) \\
& v\left(s^{\prime}\right) \geq \gamma \sum_{s \in \mathcal{S}} p\left(s \mid s^{\prime}, a_{2}\right) v(s)+r\left(s^{\prime}, a_{2}\right)
\end{aligned}
$$

- But $|\mathcal{A}|=\infty$; use:

$$
v\left(s_{1}\right) \geq \max _{a \in \mathcal{A}} \sum_{s \in \mathcal{S}} p\left(s \mid s^{\prime}, a\right) v(s)+r\left(s^{\prime}, a\right)
$$

- Solutions:
(1) Use flow LP
(2) Use constraint generation - LP to find the most violated constraint

State Of the Art in Solution Techniques

- Operations research:
- Mature field
- Focus on specialized problems
- Mathematical optimization
- Reinforcement learning:
- Many successful applications
- Approximate dynamic programming
- Often need extensive tweaking
- Planning:
- Branch and bound
- Heuristic search
- Solved approximately
- Research Objectives:
(1) Better understand the tradeoffs involved in the approximation
(2) Develop general methods
(3) Develop robust methods that rely on little tuning

Approximation Basis Structure

- May guarantee that the the transitive error is small
- Examples:
(1) Simple structure: $\mathbf{1} \in \operatorname{span} M$
(2) Smoothness structure: Lyapunov hierarchy [?] Formal
- Structure hard to guarantee in complex problems
- Solutions
(1) Expand/roll-out selected
 constraints
(2) Solve a relaxed linear program

Constraint Estimation: Blood Inventory Management

40 samples per constraint

Synchronized Sampling

- Reduce constraint estimation error
- Exploit:
- Inventory influence mostly independent of the demand and supply
- Use ω to denote the stochastic supply/demand
- $f(s, \omega)=$ the state that follows from s given action a and demand/supply ω

Synchronized Sampling

- Sampled supply/demand: $\omega_{1}^{1}, \omega_{2}^{1}, \ldots, \omega_{1}^{2}, \omega_{2}^{2}, \ldots$
- Standard constraint sampling

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & \ldots \\
0 & 1 & 0 & \ldots \\
& & \vdots & \\
0 & 0 & 0 & \ldots .
\end{array}\right)-\gamma \frac{1}{n}\left(\begin{array}{ccc}
- & \sum_{j=1}^{n} v\left(f\left(s_{1}, \omega_{j}^{1}\right)\right) & - \\
- & \sum_{j=1}^{n} v\left(f\left(s_{2}, \omega_{j}^{2}\right)\right) & - \\
- & \vdots & -
\end{array}\right)
$$

- Synchronized constraint sampling

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & \ldots \\
0 & 1 & 0 & \ldots \\
& & \vdots & \\
0 & 0 & 0 & \ldots .
\end{array}\right)-\gamma \frac{1}{n} \sum_{j=1}^{n}\left(\begin{array}{ccc}
- & v\left(f\left(s_{1}, \omega_{j}\right)\right) & - \\
- & v\left(f\left(s_{2}, \omega_{j}\right)\right) & - \\
- & \vdots & -
\end{array}\right)
$$

ALP Solution Robustness

(1) $A L P_{1}=\left(c, A_{1}, b_{1}, M\right)$ with optimal solution v_{1}
(2) $A L P_{2}=\left(c, A_{2}, b_{2}, M\right)$ with optimal solution v_{2}

Theorem

Also let $\epsilon_{a}=\left\|A_{1} M-A_{2} M\right\|_{1, \infty}$ and $\epsilon_{b}=\left\|b_{1}-b_{2}\right\|_{\infty}$. Assuming that $A_{1} \mathbf{1}=A_{2} \mathbf{1}=(1-\gamma) \mathbf{1}$ then:

$$
\left\|\tilde{v}_{1}-\tilde{v}_{2}\right\| \leq \frac{\epsilon_{a} \hat{x}}{1-\gamma}+\frac{\epsilon_{b}}{1-\gamma}
$$

- Omitting constraints that are similar does not change the solution
- May use similarity of the transitions

Constraint Estimation

- Constraints in ALP:

$$
v\left(s^{\prime}\right) \geq \gamma \sum_{s \in \mathcal{S}} p\left(s \mid s^{\prime}, a_{1}\right) v(s)+r\left(s^{\prime}, a_{1}\right) \quad \forall s \in \mathcal{S}
$$

- Sample states from the transition probability $s \rightarrow s_{1}, s_{2}, \ldots, s_{n}$
- Constraint:

$$
\begin{aligned}
v(s) & \geq \gamma P_{a} v+r_{a}=\gamma \mathrm{E}_{S}[v(S)]+r_{a} \\
& \approx \gamma \frac{1}{n} \sum_{j=1}^{n} v\left(s_{j}\right)+r_{a}
\end{aligned}
$$

- For sufficiently large n, the error is sufficiently small
- The number of samples depends on the number of features in the ALP

Constraint Estimation Error

Theorem

Let v_{1} be the solution of the true $A L P_{1}$ and let v_{2} be the solution of the sampled $A L P_{q}$. Then:

$$
\begin{array}{r}
\mathbf{P}\left[\left\|v_{1}-v_{2}\right\|_{1, c} \geq \epsilon\right] \leq n m \exp \left(-\frac{2 q \epsilon^{2} m^{2}(1-\gamma)^{2}}{\hat{x}^{2}}\right)+ \\
+n \exp \left(-\frac{2 q \epsilon^{2}(1-\gamma)^{2}}{\|r\|_{\infty}^{2}}\right),
\end{array}
$$

where $\hat{x} \geq|x(i)|$ for all i assuming that $\|M\|_{\infty}=1$.

Total Constraint Violation

- Let

$$
\min _{v \in \operatorname{span} M}\left\|v-v^{*}\right\|_{\infty} \leq \epsilon
$$

- Minimizer \hat{v}
- Constraint violation penalty:

$$
d=y^{*}+\Delta d
$$

Theorem

Let \tilde{v} be the optimal solution of the relaxed $A L P$, then:

$$
\left\|[b-A \tilde{v}]_{+}\right\|_{1, \Delta d} \leq\left(2+\Delta d^{\top} \mathbf{1}\right) \epsilon
$$

- If $v^{*} \in \operatorname{span} M$ then $\tilde{v}=v^{*}$
- Proof differs from other ALP bounds
- Cannot use that \tilde{v} is an upper bound on v^{*}

Objective Function

- L_{1} minimization:
- Problem with the nonlinearity of the absolute value
- Possible when $v \geq v^{*}$:

$$
\left\|v-v^{*}\right\|_{1}=\sum_{s \in \mathcal{S}}\left|v(s)-v^{*}(s)\right|=\sum_{s \in \mathcal{S}} v(s)-v^{*}(s)
$$

- Constants can be ignored:

$$
\arg \min _{v} \sum_{s \in \mathcal{S}} v(s)-v^{*}(s)=\arg \min _{v} \sum_{s \in \mathcal{S}} v(s)
$$

- Possible to bound the policy error

Considerations

- Demand and supply of blood are stochastic
- Blood is perishable
- Multiple blood types are compatible
- Blood type distribution: Supply \neq Demand
- Manage how much of which blood is:
(1) Used to satisfy the demand
(2) Retained in inventory
- Challenging optimization problem:
- Continuous action space
- 48-dimensional continuous state space

- High level of stochasticity

Mountain Car Value Function

Unexpanded:
Expanded 10 steps:

