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Approximate Linear Programming

Value function approximation in large Markov decision
problems

Properties:

+ Better convergence properties than other algorithms
+ Easier to analyze
– Inferior empirical performance

Goals:
1 Identify why ALP under-performs
2 Automatically improve the performance
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Blood Inventory Management Problem

Managing inventory of blood

Objectives:

Minimize shortage – demand
that is not satisfied
Maximize utilization – amount
of blood used before it perishes

Challenging optimization problem:

Continuous action space
48-dimensional continuous state
space
High level of stochasticity
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Problem Framework

Markov decision process:

States: S, including goal state

Actions: A
Transition function: p (s2 s1, a) –
probability of transition from s1 to
s2 with action a

Reward function: r(s, a) for state
s and action a

Objective:

Start with an initial state σ

Maximize discounted reward:

Es0

[ ∞∑
i=0

γ iRi

]
= Es0

[
R0 + 0.9R1 + 0.92R2 + 0.93R3 + . . .

]

s2

s3

s4

a2a1

σ

τ

Blood Management
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Linear Program Formulation

Linear program:

min
v

cTv

s.t. Av ≥ b

Constraints:

v(s ′) ≥ γ
∑
s∈S

p
(
s s ′, a1

)
v(s) + r(s ′, a1)

v(s ′) ≥ γ
∑
s∈S

p
(
s s ′, a2

)
v(s) + r(s ′, a2)

Example:

v(s2) ≥ γv(s3) + r(s2, a1)

Linear program too large – solve its
approximation

τ

σ

a1 a2

s4

s3

s2
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Approximate Linear Program Formulation

Linear program:
min

v
cTv

s.t. Av ≥ b

Reduce the number of variables in the LP

Consider an approximation basis: M, as a matrix Example

Value function from span(M): v = Mx
Columns represent features

Approximate linear program: Example

min
x

cTMx

s.t. AMx ≥ b

Many constraints – reduce by sampling
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Approximation Error

Approximation error:

1 Representational – Limited approximation features (basis) M

2 Transitional – Limitation of ALP formulation

3 Sampling – Limited number of sampled constraints

Formulations
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Transitional Error Bounds

ALP bounds in theory better than other algorithms

Typical ADP Algorithms:

lim sup
k→∞

‖v∗ − vk‖∞ ≤ lim sup
k→∞

2

(1− γ)2
‖ṽk − vk‖∞

ALP converges:

‖v∗ − ṽ‖1 ≤
2

1− γ
min

x
‖v∗ −Mx‖∞

The error may be too large anyway – high discount factor

When γ → 1 then 2
1−γ →∞

Better bounds with structure, but hard to guarantee Structure
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Chain Problem

Chain problem:
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Chain Problem: ALP Result
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Causes of Large Transitive Error

Presence of a virtual loop
No loop in original problem
Loop when approximated

Assume v(s6) = 0

Precise LP constraints:

v(s5) ≥ γv(s6) + r

v(s5) = r

In the approximation: v(s5) = v(s6)

Approximate LP constraints:

x ≥ γx + r

v(s5) = x≥ 1

1− γ
r
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Loops and Dual Variables

Primal:

min
v

cTv

s.t. Av ≥ b

Dual:

max
y

bTy

s.t. ATy = c

y ≥ 0

Dual variable y corresponds to “discounted visitation
frequencies”
Chain example:
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Virtual Loops and Dual Variables
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Expanding Constraints

Roll out constraints

Can “break” virtual loops
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Error Bounds

Assume that 1 ∈ span M

Constraint expansion lowers the
discount factor

Theorem

Let ṽt be a solution of a t-step ALP:

‖ṽt − v∗‖1,c ≤
2

1− γt
min

x
‖v∗ −Mx‖∞

Error reduction with t:
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Adaptive Constraint Expansion

Too many constraints to expand:
1 Computational problem
2 Number of samples to bound the

approximation error

Expand only some constraints
using y

Solution of ALP: v

Solution of expanded ALP: v̄

1 2 3 4 5 6 7
0

5
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y

State

Theorem

Improvement from constraint expansion is at most:

‖v − v∗‖1,c − ‖v̄ − v∗‖1,c ≤
‖ [Av − b]+ ‖∞

1− γ
‖yTA‖1
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Relaxed Approximate Linear Program

A few constraints may cause large
error

Allow limited constraint
violation

Original linear program:

min
v

cTv

s.t. Av ≥ b

Penalty for constraint violation: d

min
v

cTv + dT [b − Av ]+
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Dual Motivation

Offending constraints indicated by
large y

Relaxed ALP:

min
v

cTv + dT [b − Av ]+

Dual of relaxed ALP:

max
y

bTy

s.t. ATy = c

y ≥ 0

y ≤ d
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Number of Violated Constraints

Assume that 1 ∈ span M

Violated constraints: IV

Active constraints: IA

Theorem

Let d(·) denotes the sum of the weights on the set of constraints:

d(IV ) ≤ 1

1− γ

d(IA) + d(IV ) ≥ 1

1− γ

Guarantee that at most k constraints are violated More Bounds

d >
1

(k + 1)(1− γ)
1
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Chain
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Mountain Car

Underpowered car must climb a hill

2-dimensional state space

Total constraints: 9000
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Relaxed ALP: Blood Inventory Management

Results:

Optimal RALP Myopic ALP
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Concave value function

Piece-wise linear
approximation

ALP is an upper bound on
the derivative of the value
function
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Conclusion

Approximation error in ALP

Representational error
Transitional error
Sampling error

Reduction of the transitional error:

Constraint expansion
Relaxed linear program formulation

Can significantly improve the ALP performance



Domain Samples

Solution is based on samples of the
domain

Arbitrary goal-terminated paths:

(σ, a1), (s2, a1), (s3, a2), τ

Optimal goal-terminated paths:

(σ, a2), (s3, a2), τ

Transitional samples:

(s2, a1, s2)

Expected transitional samples
(model) :

(s2, a1,E [s2])

τ

σ

a1 a2

s4

s3

s2



Blood Inventory Management: Greedy Solution

Finding the best way of using a
given inventory – single step

Actions:

yi j – Type i used to satisfy
demand for type j
zi – Type i that is retained in
inventory

Solved as a simple flow problem:

max
y ,z

∑
ij

cijyij

s.t.
∑
j∈T

yij + zk ≤ C (i) ∀i ∈ T b∑
i

yij ≤ D(j) ∀j ∈ T

yij , zi ≥ 0 ∀i , j ∈ T

AB+

A-

D(A-) D(AB+)

C (A-) C (AB+)

y11

y12

z1
z2

y21
y22



Lyapunov Hierarchy [?]

Definition

Let u1 . . . uk ≥ 0 be a set of vectors, and A and b be partitioned
into Ai and bi respectively. This set of vectors is called a Lyapunov
vector hierarchy if there exist βi < 1 such that:

Aiu
i ≤ βiu

i

Aju
i ≤ 0 ∀j < i

Theorem

Assume that there exists a Lyapunov hierarchy
u1 . . . ul ∈ span(M). Then:

‖ṽ − v∗‖∞ ≤

(
1 +

l∏
i=1

(1 + αγ) maxk ui (k)

(1− γβi ) mink ui
i (k)

)
2 min

x
‖v∗ −Mx‖∞.

Hard to ensure the hierarchy



Tetris: Effect of Discount Factor [?]
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Discount Factor Biasing

Works in problems with sparse rewards
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Constraint Formulation Properties

Direct Formulation:

v(s) ≥ v∗(s)

– Impractical in stochastic
problems

– Many constraints per state:
|A|h

– Large sampling error

+ Small transitional error

Transitional Formulation:

v(s ′) ≥ γ
∑
s∈S

p (s s ′, a) v(s)+r(s ′, a)

+ Practical in stochastic
problems

+ Constraints per state: |A|
+ Small sampling error

– Large transitional error

A hybrid approach?



Online Solution Methods

Use value function v to act:
1 Greedy

One step lookahead
Fixed solution time
Solution quality depends on value function v

2 A*

Only Deterministic problems
Fixed solution quality (optimal if v is admissible)
Solution time depends on value function v

3 LAO*

Extends A* to stochastic problems

4 Tradeoff

Minimize time complexity, satisfying time bound



Blood Inventory Management: MDP Formulation

Stage = week

State: = (Inventory, Demand)

Actions: How to satisfy supply
with

Blood type
Blood amount

Transition function:
1 Old blood discarded
2 New stochastic demand
3 Stochastic supply added to

inventory

Reward function:
Linear contribution per unit of
satisfied blood demand
Multiple levels of demand priority

AB+

A+

AB-

O-

AB+

AB-

AB+

AB+

A+

AB-

O-

AB-

T T+1

Demand

Supply

Inventory Inventory



Approximation Basis in Blood Inventory Management

Defines a set of values for each
post-decision state – inventory.

Structure:

Piece-wise linear
Fixed regions of linearity

M =
Feature A Feature B

A=0, B=1 0 1
A=0, B=2 0 2
A=1, B=0 1 0
A=2, B=0 2 0
A=1, B=1 1 1

Greedy step be formulated as a
flow problem LP

Example value function:

0
1

2
3

4
5

6
7

8
9

10

0

2

4

6

8

10
0

50

100

150

200

250

300

350

400

450

500

Amount blood type ABAmount blood type 0

V
a
l
u
e
 
f
u
n
c
t
i
o
n

Linear regions



Blood Inventory Management: ALP

ALP Constraints:

v(s ′) ≥ γ
∑
s∈S

p
(
s s ′, a1

)
v(s) + r(s ′, a1)

v(s ′) ≥ γ
∑
s∈S

p
(
s s ′, a2

)
v(s) + r(s ′, a2)

But |A| =∞; use:

v(s1) ≥ max
a∈A

∑
s∈S

p
(
s s ′, a

)
v(s) + r(s ′, a)

Solutions:
1 Use flow LP
2 Use constraint generation – LP to find

the most violated constraint

AB+

A-

D(A-) D(AB+)

C (A-) C (AB+)

y11

y12

z1
z2

y21
y22



State Of the Art in Solution Techniques

Operations research:

Mature field
Focus on specialized problems
Mathematical optimization

Reinforcement learning:

Many successful applications
Approximate dynamic programming
Often need extensive tweaking

Planning:

Branch and bound
Heuristic search

Solved approximately

Research Objectives:
1 Better understand the tradeoffs involved in the approximation
2 Develop general methods
3 Develop robust methods that rely on little tuning



Approximation Basis Structure

May guarantee that the the
transitive error is small

Examples:
1 Simple structure: 1 ∈ span M
2 Smoothness structure: Lyapunov

hierarchy [?] Formal

Structure hard to guarantee in
complex problems

Solutions
1 Expand/roll-out selected

constraints
2 Solve a relaxed linear program



Constraint Estimation: Blood Inventory Management

40 samples per constraint
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Synchronized Sampling

Reduce constraint estimation error

Exploit:

Inventory influence mostly independent of the demand and
supply

Use ω to denote the stochastic supply/demand

f (s, ω) = the state that follows from s given action a and
demand/supply ω



Synchronized Sampling

Sampled supply/demand: ω1
1, ω

1
2, . . . , ω

2
1, ω

2
2, . . .

Standard constraint sampling

A =


1 0 0 . . .
0 1 0 . . .

...
0 0 0 . . . 1

− γ 1

n

−
∑n

j=1 v(f (s1, ω
1
j )) −

−
∑n

j=1 v(f (s2, ω
2
j )) −

−
... −


Synchronized constraint sampling

A =


1 0 0 . . .
0 1 0 . . .

...
0 0 0 . . . 1

− γ 1

n

n∑
j=1

− v(f (s1, ωj)) −
− v(f (s2, ωj)) −

−
... −


Back



ALP Solution Robustness

1 ALP1 = (c ,A1, b1,M) with optimal solution v1

2 ALP2 = (c ,A2, b2,M) with optimal solution v2

Theorem

Also let εa = ‖A1M − A2M‖1,∞ and εb = ‖b1 − b2‖∞. Assuming
that A11 = A21 = (1− γ)1 then:

‖ṽ1 − ṽ2‖ ≤
εax̂

1− γ
+

εb
1− γ

.

Omitting constraints that are similar does not change the
solution

May use similarity of the transitions



Constraint Estimation

Constraints in ALP:

v(s ′) ≥ γ
∑
s∈S

p
(
s s ′, a1

)
v(s) + r(s ′, a1) ∀s ∈ S

Sample states from the transition probability s → s1, s2, . . . , sn

Constraint:

v(s) ≥ γPav + ra = γES [v(S)] + ra

≈ γ 1

n

n∑
j=1

v(sj) + ra

For sufficiently large n, the error is sufficiently small

The number of samples depends on the number of features in
the ALP



Constraint Estimation Error

Theorem

Let v1 be the solution of the true ALP1 and let v2 be the solution
of the sampled ALPq. Then:

P [‖v1 − v2‖1,c ≥ ε] ≤ nm exp

(
−2qε2m2(1− γ)2

x̂2

)
+

+n exp

(
−2qε2(1− γ)2

‖r‖2
∞

)
,

where x̂ ≥ |x(i)| for all i assuming that ‖M‖∞ = 1.



Total Constraint Violation

Let
min

v∈span M
‖v − v∗‖∞ ≤ ε

Minimizer v̂

Constraint violation penalty:

d = y∗ + ∆d

Theorem

Let ṽ be the optimal solution of the relaxed ALP, then:

‖[b − Aṽ ]+‖1,∆d ≤ (2 + ∆dT1)ε.

If v∗ ∈ span M then ṽ = v∗

Proof differs from other ALP bounds

Cannot use that ṽ is an upper bound on v∗



Objective Function

L1 minimization:

Problem with the nonlinearity of the absolute value
Possible when v ≥ v∗:

‖v − v∗‖1 =
∑
s∈S
|v(s)− v∗(s)| =

∑
s∈S

v(s)− v∗(s)

Constants can be ignored:

arg min
v

∑
s∈S

v(s)− v∗(s) = arg min
v

∑
s∈S

v(s)

Possible to bound the policy error



Considerations

Demand and supply of blood are stochastic

Blood is perishable

Multiple blood types are compatible

Blood type distribution: Supply 6= Demand

Manage how much of which blood is:
1 Used to satisfy the demand
2 Retained in inventory

Challenging optimization problem:

Continuous action space
48-dimensional continuous state space
High level of stochasticity

Solution Methods
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Mountain Car Value Function

Unexpanded:

−2
−1

0
1

−0.1

0

0.1
−10

0

10

20

Expanded 10 steps:

−2
−1

0
1

−0.1

0

0.1
−5

0

5

10

15

20


	Framework
	

	Approximation Error
	

	Constraint Expansion
	

	Relaxed ALP
	

	Results
	

	Conclusion
	Appendix

