An Efficient Projection for $l_{1,\infty}$ Regularization

Ariadna Quattoni

Michael Collins

Xavier Carreras

Trevor Darrell

MIT CSAIL
UC Berkeley & ICSI

Joint Sparsity

Goal:

□ Efficient training of jointly sparse models in high dimensional spaces.

Why?:

- □ Learn from fewer examples.
- Build more efficient classifiers.
- Interpretability.

Church

Airport

Grocery Store

Flower-Shop

 $W_{1,1}$

 $W_{1,3}$

 $W_{1,4}$

 $W_{2,1}$

 $W_{2,2}$

 $W_{2,3}$

 $W_{2,4}$

 $w_{3,1}$

 $W_{3,2}$

 $W_{3,3}$

 $W_{3,4}$

 $W_{4,1}$

 $W_{4,2}$

 $W_{4,3}$

 $W_{4,4}$

 $W_{5,1}$

 $W_{5,2}$

 $W_{5,3}$

 $W_{5,4}$

Church

Grocery Store

Flower-Shop

 $W_{1,1}$

 $W_{2,1}$

 $W_{3,1}$

 $W_{4,1}$

 $W_{4,3}$

 $W_{4,4}$

 $W_{5,1}$

 $W_{5,2}$

 $W_{5,3}$

 $W_{5,4}$

Airport **Grocery Store** Flower-Shop Church $W_{2,3}$ $W_{2,2}$ $W_{2,1}$ $W_{2,4}$ $W_{4,2}$ $W_{4,3}$ $W_{4,4}$ $W_{4,1}$ $W_{5,3}$

$l_{1,\infty}$ Regularization

□ How do we promote joint (i.e. row) sparsity?

$$W = \begin{pmatrix} W_{1,1} & W_{1,2} & \cdots & W_{1,m} \\ W_{2,1} & W_{2,2} & \cdots & W_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ W_{d,1} & W_{d,2} & \cdots & W_{d,m} \end{pmatrix}$$
Coefficients for feature 2
$$\text{Coefficients for task 2}$$

$$||W||_{1,\infty} = \sum_{i=1}^{d} \max_{k} (|W_{i,k}|)$$

The l_{∞} norm on each row promotes non-sparsity on each row.

An l₁ norm on the maximum absolute values of the coefficients across tasks promotes sparsity.

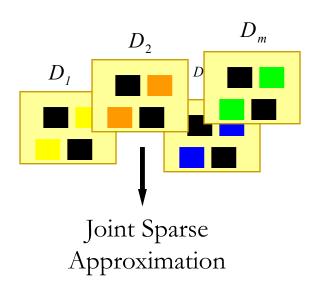
Share parameters

Use few features

Contributions

- \square An efficient projected gradient method for $\mathbf{l}_{1,\infty}$ regularization
- □ Our projection works in O(n log n) time
- Experiments in multitask image classification problems
- □ We can discover jointly sparse solutions
- $\ \square \ l_{1,\infty}$ regularization leads to better performance than l_2 and l_1 regularization

Multitask Application



Collection of Tasks

$$\mathbf{D} = \{D_1, D_2, \dots, D_m\}$$

$$D_k = \{(x_1^k, y_1^k), \dots, (x_{n_k}^k, y_{n_k}^k)\}$$

$$\mathbf{x} \in \mathbb{R}^d \ y \in \{+1, -1\}$$

$$\arg\min_{W} \sum_{i=1}^{m} \frac{1}{|D_k|} \sum_{(x,y)\in D_k} L(f_k(x), y) + Q \sum_{i=1}^{d} \max_{k} (|W_{i,k}|)$$

$\mathbf{l}_{1,\infty}$ Regularization: Constrained Convex Optimization Formulation

$$\arg\min_{W} \sum_{i=1}^{m} \frac{1}{|D_k|} \sum_{(x,y) \in D_k} L(f_k(x), y) \qquad \text{(convex cost function)}$$

$$s.t. \sum_{i=1}^{d} \max_{k} (|W_{i,k}|) \leq C \qquad \text{(convex constraints)}$$

- We use a Projected SubGradient method.
 Main advantages: simple, scalable, guaranteed convergence rates.
- Projected SubGradient methods have been recently proposed:
 - l₂ regularization, i.e. SVM [Shalev-Shwartz et al. 2007]
 - l₁ regularization [Duchi et al. 2008]

Euclidean Projection into the $l_{1-\infty}$ ball

$$\mathbf{P}_{1,\infty}: \min_{B,\mu} \frac{1}{2} \sum_{i,j} (B_{i,j} - A_{i,j})^2$$
s.t.
$$\forall i, j \ B_{i,j} \le \mu_i$$

$$\sum_{i} \mu_i = C$$

$$\forall i, j \ B_{i,j} \ge 0$$

$$\forall i \ \mu_i \ge 0$$

Characterization of the solution

Let μ be the optimal maximums of problem $P_{1,\infty}$. The optimal matrix B of $P_{1,\infty}$ satisfies that:

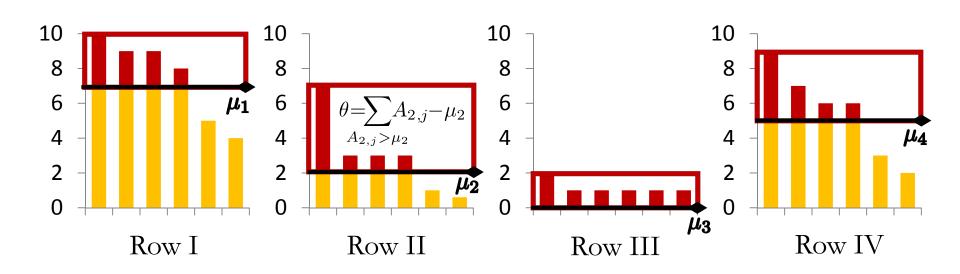
$$A_{i,j} \ge \mu_i \quad \Rightarrow \quad B_{i,j} = \mu_i$$
 $A_{i,j} \le \mu_i \quad \Rightarrow \quad B_{i,j} = A_{i,j}$
 $\mu_i = 0 \quad \Rightarrow \quad B_{i,j} = 0$

Characterization of the solution

At the optimal solution of $P_{1,\infty}$ there exists a constant $\theta \geq 0$ such that for every i either:

$$\mu_i > 0$$
 and $\sum_{j} (A_{i,j} - B_{i,j}) = \theta$

$$\mu_i = 0 \quad \text{and} \quad \sum_{j} A_{i,j} \le \theta$$



Mapping to a simpler problem

We can map the projection problem to the following problem which finds the optimal maximums μ :

$$\mathbf{M}_{1,\infty}: \text{ find } \boldsymbol{\mu} , \boldsymbol{\theta}$$

$$\text{s.t. } \sum_{i} \mu_{i} = C$$

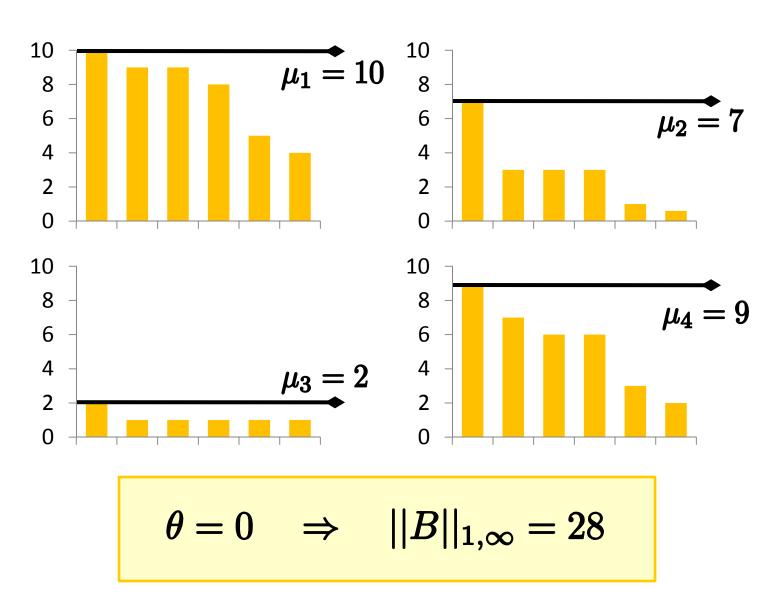
$$\sum_{j:A_{i,j} \geq \mu_{i}} (A_{i,j} - \mu_{i}) = \boldsymbol{\theta} , \forall i \text{ s.t. } \mu_{i} > 0$$

$$\sum_{j:A_{i,j} \leq \mu_{i}} A_{i,j} \leq \boldsymbol{\theta} , \forall i \text{ s.t. } \mu_{i} = 0$$

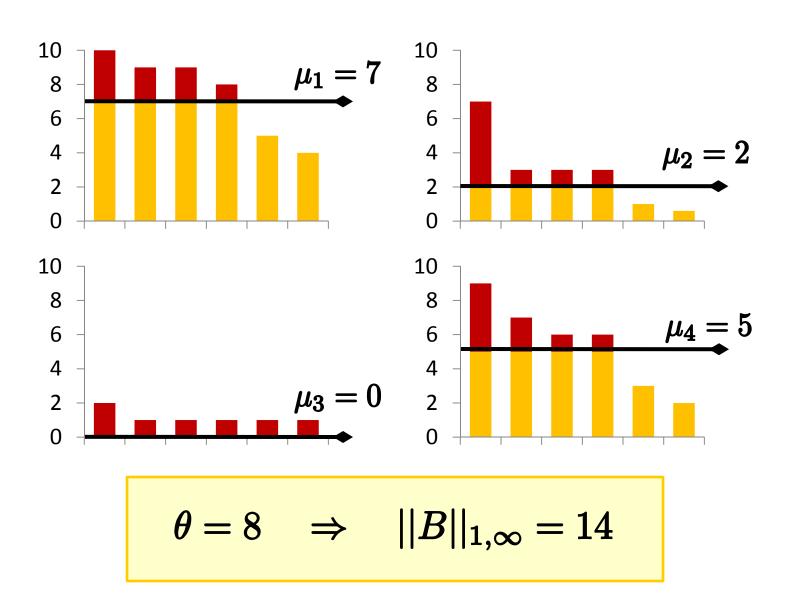
$$\forall i \ \mu_{i} \geq 0 ; \boldsymbol{\theta} \geq 0$$

For any matrix A and a constant C such that $C < ||A||_{1,\infty}$, there is a unique solution μ^*, θ^* to the problem $M_{1,\infty}$.

Efficient Algorithm



Efficient Algorithm



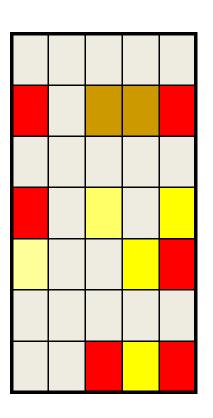
Complexity

□ The total cost of the algorithm is dominated by sorting the entries of **A**

 \Box $O(dm \log(dm))$ time

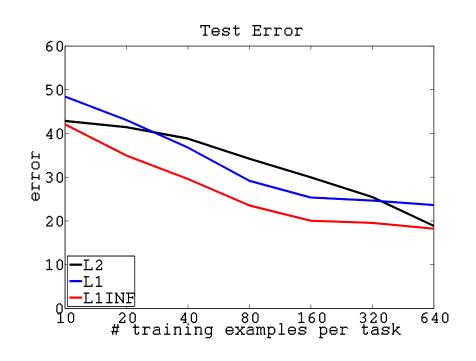
Synthetic Experiments

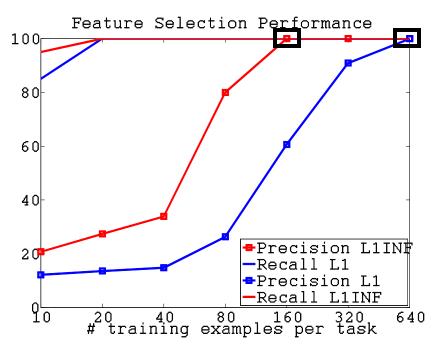
□ Generate a jointly sparse parameter matrix **W**:



- □ For every task we generate pairs: (x_i^k, y_i^k) where: $y_i^k = \text{sign}(w_k \cdot x_i^k)$
- We compared three different types of regularization :
 - > $l_{1,\infty}$ projection
 - > l₁ projection
 - ≥ l₂ projection

Synthetic Experiments

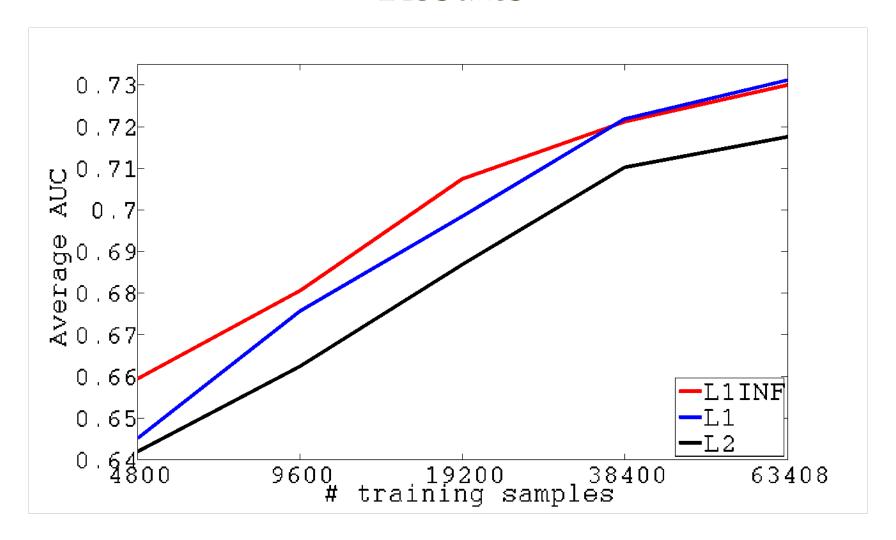




Dataset: Image Annotation

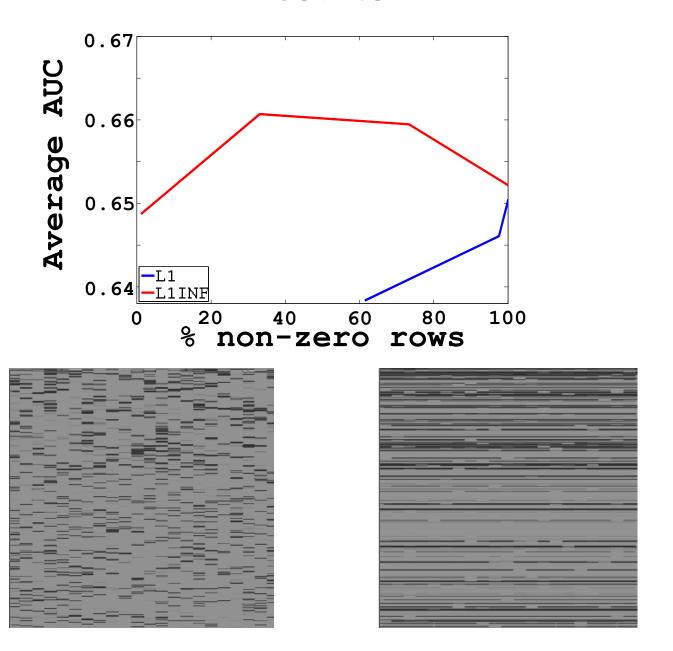
- □ 40 top content words
- □ Raw image representation: Vocabulary Tree (Nister and Stewenius 2006)
- □ 11000 dimensions

Results



Most of the differences are statistically significant

Results

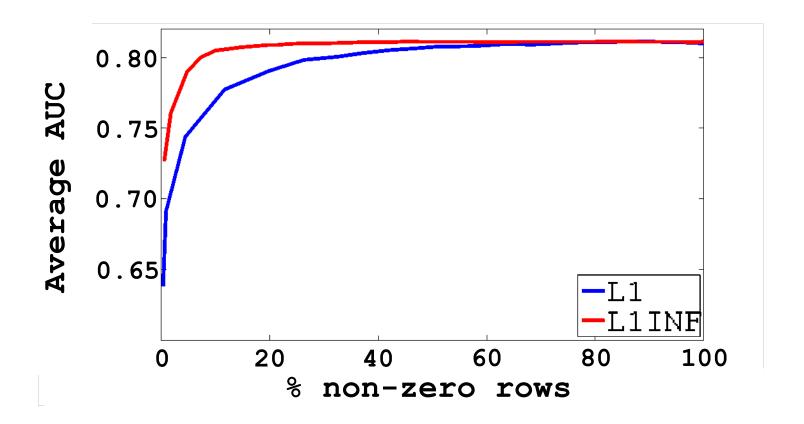


Dataset: Indoor Scene Recognition



- □ 67 indoor scenes.
- □ Raw image representation: similarities to a set of unlabeled images.
- □ 2000 dimensions.

Results



Conclusions

- \square We proposed an efficient global optimization algorithm for $l_{1,\infty}$ regularization.
- \square A simple an efficient tool to implement an $l_{1,\infty}$ penalty, similar to standard l_1 and l_2 penalties.
- We presented experiments on image classification tasks and showed that our method can recover jointly sparse solutions.