PAC-Bayesian Learning of Linear Classifiers

 Laval University, Quebec city, CanadaP. Germain A. Lacasse F. Laviolette M. Marchand

June 17, 2009

In search of an optimization problem for learning

- The goal of the learner is to try to find a classifier h with the smallest possible risk $R(h)$

$$
R(h) \stackrel{\text { def }}{=} \operatorname{Pr}_{(\mathbf{x}, y) \sim D}\{h(\mathbf{x}) \neq y\}=\underset{(\mathbf{x}, \mathbf{y}) \sim D}{\mathbf{E}} I(h(\mathbf{x}) \neq y) .
$$

- However, we do not know the data-generating distribution D
 Mhat cheuld the learner entimize on S to ohtain a classifier h having the smallest possible risk $R(h)$?

In search of an optimization problem for learning

- The goal of the learner is to try to find a classifier h with the smallest possible risk $R(h)$

$$
R(h) \stackrel{\text { def }}{=} \operatorname{Pr}_{(\mathbf{x}, y) \sim D}\{h(\mathbf{x}) \neq y\}=\underset{(\mathbf{x}, \mathbf{y}) \sim D}{\mathbf{E}} I(h(\mathbf{x}) \neq y) .
$$

- However, we do not know the data-generating distribution D.
- We have only access to $S \xlongequal{=}\left\{\left(\mathrm{x}_{1}, y_{1}\right) \ldots\left(\mathrm{x}_{m}, y_{m}\right)\right\}:$ a
training set of m examples, each generated according to D
- What should the learner optimize on S to obtain a classifier h having the smallest possible risk $R(h)$?

In search of an optimization problem for learning

- The goal of the learner is to try to find a classifier h with the smallest possible risk $R(h)$

$$
R(h) \stackrel{\text { def }}{=} \operatorname{Pr}_{(\mathbf{x}, y) \sim D}\{h(\mathbf{x}) \neq y\}=\underset{(\mathbf{x}, \mathbf{y}) \sim D}{\mathbf{E}} I(h(\mathbf{x}) \neq y) .
$$

- However, we do not know the data-generating distribution D.
- We have only access to $S \stackrel{\text { def }}{=}\left\{\left(\mathbf{x}_{1}, y_{1}\right) \ldots\left(\mathbf{x}_{m}, y_{m}\right)\right\}$: a training set of m examples, each generated according to D.
- What should the learner optimize on S to obtain a classifier h having the smallest possible risk $R(h)$?

In search of an optimization problem for learning

- The goal of the learner is to try to find a classifier h with the smallest possible risk $R(h)$

$$
R(h) \stackrel{\text { def }}{=} \operatorname{Pr}_{(\mathbf{x}, y) \sim D}\{h(\mathbf{x}) \neq y\}=\underset{(\mathbf{x}, y) \sim D}{\mathbf{E}} I(h(\mathbf{x}) \neq y) .
$$

- However, we do not know the data-generating distribution D.
- We have only access to $S \stackrel{\text { def }}{=}\left\{\left(\mathbf{x}_{1}, y_{1}\right) \ldots\left(\mathbf{x}_{m}, y_{m}\right)\right\}$: a training set of m examples, each generated according to D.
- What should the learner optimize on S to obtain a classifier h having the smallest possible risk $R(h)$?

PAC-Bayesian bound minimization

- Several objective functions (to minimize on S) have been proposed.
- The soft-margin SVM, AdaBoost, ridge regression...

But the final rigorous (and accepted) guarantee is always a risk bound that holds uniformly over a space of classifiers. I et us try to desion an efficient learning aloorithm that minimizes the PAC-Bayes bound.

PAC-Bayesian bound minimization

- Several objective functions (to minimize on S) have been proposed.
- The soft-margin SVM, AdaBoost, ridge regression...
- But the final rigorous (and accepted) guarantee is always a risk bound that holds uniformly over a space of classifiers.
- Let us try to design an efficient learning algorithm that minimizes the PAC-Bayes bound.

PAC-Bayesian bound minimization

- Several objective functions (to minimize on S) have been proposed.
- The soft-margin SVM, AdaBoost, ridge regression...
- But the final rigorous (and accepted) guarantee is always a risk bound that holds uniformly over a space of classifiers.
- Let us try to design an efficient learning algorithm that minimizes the PAC-Bayes bound.

Summary

- A simple and general theorem from which all other known PAC-Bayes bound can be simply derived.

Summary

- A simple and general theorem from which all other known PAC-Bayes bound can be simply derived.
- Specialization to linear classifiers.
Gradient descent of the PAC-Bayes bound: three different learning algorithms. Fxtensive numerical results and comparison with AdaBoost and the SVM

Summary

- A simple and general theorem from which all other known PAC-Bayes bound can be simply derived.
- Specialization to linear classifiers.
- Gradient descent of the PAC-Bayes bound: three different learning algorithms.
- Extensive numerical results and comparison with AdaBoost and the SVM

Summary

- A simple and general theorem from which all other known PAC-Bayes bound can be simply derived.
- Specialization to linear classifiers.
- Gradient descent of the PAC-Bayes bound: three different learning algorithms.
- Extensive numerical results and comparison with AdaBoost and the SVM.

Definitions

- The (true) risk $R(h)$ and training error $R_{S}(h)$ are defined as:

$$
R(h) \stackrel{\text { def }}{=} \underset{(\mathbf{x}, y) \sim D}{\mathbf{E}} I(h(\mathbf{x}) \neq y) \quad ; \quad R_{S}(h) \stackrel{\text { def }}{=} \frac{1}{m} \sum_{i=1}^{m} I\left(h\left(\mathbf{x}_{i}\right) \neq y_{i}\right)
$$

- The learner's goal is to choose a posterior distribution Q on a space \mathcal{H} of classifiers such that the risk of the Q-weighted maiority vote B_{n} is as small as possible.
- PAC-Bayes bounds the risk of the Gibbs classifier G_{Q}. To predict the label of x, G_{Q} draws h from H and predicts $h(x)$

Definitions

- The (true) risk $R(h)$ and training error $R_{S}(h)$ are defined as:

$$
R(h) \stackrel{\text { def }}{=} \underset{(\mathbf{x}, y) \sim D}{\mathbf{E}} I(h(\mathbf{x}) \neq y) \quad ; \quad R_{S}(h) \stackrel{\text { def }}{=} \frac{1}{m} \sum_{i=1}^{m} I\left(h\left(\mathbf{x}_{i}\right) \neq y_{i}\right)
$$

- The learner's goal is to choose a posterior distribution Q on a space \mathcal{H} of classifiers such that the risk of the Q-weighted majority vote B_{Q} is as small as possible.
- PAC-Bayes bounds the risk of the Gibbs classifier G_{Q}. To predict the label of \mathbf{x}, G_{Q} draws h from \mathcal{H} and predicts $h(\mathbf{x})$ - The risk and the training error of G_{Q} are thus defined as:

Definitions

- The (true) risk $R(h)$ and training error $R_{S}(h)$ are defined as:

$$
R(h) \stackrel{\text { def }}{=} \underset{(\mathbf{x}, y) \sim D}{\mathbf{E}} I(h(\mathbf{x}) \neq y) \quad ; \quad R_{S}(h) \stackrel{\text { def }}{=} \frac{1}{m} \sum_{i=1}^{m} I\left(h\left(\mathbf{x}_{i}\right) \neq y_{i}\right)
$$

- The learner's goal is to choose a posterior distribution Q on a space \mathcal{H} of classifiers such that the risk of the Q-weighted majority vote B_{Q} is as small as possible.
- PAC-Bayes bounds the risk of the Gibbs classifier G_{Q}. To predict the label of \mathbf{x}, G_{Q} draws h from \mathcal{H} and predicts $h(\mathbf{x})$.

Definitions

- The (true) risk $R(h)$ and training error $R_{S}(h)$ are defined as:

$$
R(h) \stackrel{\text { def }}{=} \underset{(\mathbf{x}, y) \sim D}{\mathbf{E}} I(h(\mathbf{x}) \neq y) \quad ; \quad R_{S}(h) \stackrel{\text { def }}{=} \frac{1}{m} \sum_{i=1}^{m} I\left(h\left(\mathbf{x}_{i}\right) \neq y_{i}\right)
$$

- The learner's goal is to choose a posterior distribution Q on a space \mathcal{H} of classifiers such that the risk of the Q-weighted majority vote B_{Q} is as small as possible.
- PAC-Bayes bounds the risk of the Gibbs classifier G_{Q}. To predict the label of \mathbf{x}, G_{Q} draws h from \mathcal{H} and predicts $h(\mathbf{x})$.
- The risk and the training error of G_{Q} are thus defined as:

$$
R\left(G_{Q}\right)=\underset{h \sim Q}{\mathbf{E}} R(h) \quad ; \quad R_{S}\left(G_{Q}\right)=\underset{h \sim Q}{\mathbf{E}} R_{S}(h)
$$

G_{Q}, B_{Q}, and $K L(Q \| P)$

- If B_{Q} misclassifies \mathbf{x}, then at least half of the classifiers (under measure Q) err on \mathbf{x}. Then $R\left(B_{Q}\right) \leq 2 R\left(G_{Q}\right)$: An upper bound on $R\left(G_{Q}\right)$ also gives an upper bound on $R\left(B_{Q}\right)$.

PAC-Bayes makes use of a prior distribution P on \mathcal{H}.
 The risk bound depends on the Kullback-Leibler divergence

$K L(Q \| P)$

G_{Q}, B_{Q}, and $K L(Q \| P)$

- If B_{Q} misclassifies \mathbf{x}, then at least half of the classifiers (under measure Q) err on \mathbf{x}. Then $R\left(B_{Q}\right) \leq 2 R\left(G_{Q}\right)$: An upper bound on $R\left(G_{Q}\right)$ also gives an upper bound on $R\left(B_{Q}\right)$.
- PAC-Bayes makes use of a prior distribution P on \mathcal{H}.

- We will also make use of the of the KL divergence between Rernoulli distrihutions of nrohahility of success n and q :

G_{Q}, B_{Q}, and $K L(Q \| P)$

- If B_{Q} misclassifies \mathbf{x}, then at least half of the classifiers (under measure Q) err on \mathbf{x}. Then $R\left(B_{Q}\right) \leq 2 R\left(G_{Q}\right)$: An upper bound on $R\left(G_{Q}\right)$ also gives an upper bound on $R\left(B_{Q}\right)$.
- PAC-Bayes makes use of a prior distribution P on \mathcal{H}.
- The risk bound depends on the Kullback-Leibler divergence $\mathrm{KL}(Q \| P)$:

$$
\mathrm{KL}(Q \| P) \stackrel{\text { def }}{=} \underset{h \sim Q}{\mathbf{E}} \ln \frac{Q(h)}{P(h)} .
$$

- We will also make use of the of the KL divergence between Bernoulli distributions of probability of success p and q :

G_{Q}, B_{Q}, and $\mathrm{KL}(Q \| P)$

- If B_{Q} misclassifies \mathbf{x}, then at least half of the classifiers (under measure Q) err on \mathbf{x}. Then $R\left(B_{Q}\right) \leq 2 R\left(G_{Q}\right)$: An upper bound on $R\left(G_{Q}\right)$ also gives an upper bound on $R\left(B_{Q}\right)$.
- PAC-Bayes makes use of a prior distribution P on \mathcal{H}.
- The risk bound depends on the Kullback-Leibler divergence $\mathrm{KL}(Q \| P)$:

$$
\mathrm{KL}(Q \| P) \stackrel{\text { def }}{=} \underset{h \sim Q}{\mathbf{E}} \ln \frac{Q(h)}{P(h)} .
$$

- We will also make use of the of the KL divergence between Bernoulli distributions of probability of success p and q :

$$
\mathrm{kl}(q, p) \stackrel{\text { def }}{=} q \ln \frac{q}{p}+(1-q) \ln \frac{1-q}{1-p} .
$$

The General PAC-Bayes Theorem

Theorem 1

For any distribution D, for any set \mathcal{H} of classifiers, for any prior distribution P of support \mathcal{H}, for any $\delta \in(0,1]$, and for any convex function $\mathcal{D}:[0,1] \times[0,1] \rightarrow \mathbb{R}$, we have

$$
\begin{aligned}
& \operatorname{Pr}_{S \sim D^{m}}\left(\forall Q \text { on } \mathcal{H}: \quad \mathcal{D}\left(R_{S}\left(G_{Q}\right), R\left(G_{Q}\right)\right) \leq\right. \\
& \left.\quad \frac{1}{m}\left[\operatorname{KL}(Q \| P)+\ln \left(\frac{1}{\delta} \underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right)\right]\right) \\
& \geq 1-\delta .
\end{aligned}
$$

The Langford (2005) and Seeger (2002) bound

We recover a slightly tighter version if $\mathcal{D}(q, p)=\mathrm{kl}(q, p)$ and

$$
\begin{aligned}
\underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathrm{kl}\left(R_{S}(h), R(h)\right)} & =\sum_{k=0}^{m}\binom{m}{k}(k / m)^{k}(1-k / m)^{m-k} \\
& \stackrel{\text { def }}{=} \xi(m) \in \Theta(\sqrt{m}) .
\end{aligned}
$$

The Langford (2005) and Seeger (2002) bound

We recover a slightly tighter version if $\mathcal{D}(q, p)=\mathrm{kl}(q, p)$ and

$$
\begin{aligned}
\underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathrm{kl}\left(R_{S}(h), R(h)\right)} & =\sum_{k=0}^{m}\binom{m}{k}(k / m)^{k}(1-k / m)^{m-k} \\
& \stackrel{\text { def }}{=} \xi(m) \in \Theta(\sqrt{m}) .
\end{aligned}
$$

Corollary 2.1

For any D, any \mathcal{H}, any P of support \mathcal{H}, any $\delta \in(0,1]$, we have

$$
\begin{aligned}
& \operatorname{Pr}_{S \sim D^{m}}\left(\forall Q \text { on } \mathcal{H}: \operatorname{kl}\left(R_{S}\left(G_{Q}\right), R\left(G_{Q}\right)\right) \leq\right. \\
& \left.\qquad \frac{1}{m}\left[\operatorname{KL}(Q \| P)+\ln \frac{\xi(m)}{\delta}\right]\right) \geq 1-\delta,
\end{aligned}
$$

Graphical illustration of the Langford-Seeger bound

A bound also found by Catoni (2007)

Let $\mathcal{D}(q, p)=\mathcal{F}(p)-\mathcal{C} \cdot q$. Then
$\underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{s}(h), R(h)\right)}=\underset{h \sim P}{\mathbf{E}} e^{m \mathcal{F}(R(h))}\left(R(h) e^{-C}+(1-R(h))\right)^{m}$.

A bound also found by Catoni (2007)

Let $\mathcal{D}(q, p)=\mathcal{F}(p)-C \cdot q$. Then
$\underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}=\underset{h \sim P}{\mathbf{E}} e^{m \mathcal{F}(R(h))}\left(R(h) e^{-C}+(1-R(h))\right)^{m}$.
Corollary 2.2
For any D, any \mathcal{H}, any P of support \mathcal{H}, any $\delta \in(0,1]$, and any positive real number C, we have

$$
\operatorname{Pr}_{S \sim D^{m}}\left(\begin{array} { l }
{ \forall Q \text { on } \mathcal { H } : } \\
{ R (G _ { Q }) \leq \frac { 1 } { 1 - e ^ { - C } } }
\end{array} \quad \left\{1-\exp \left[-\left(C \cdot R_{S}\left(G_{Q}\right)\right] \geq 1-\delta .\right.\right.\right.
$$

Observations about Corollary 2.2

- G_{Q} is minimizing the bound of Corollary 2.2 iff it minimizes the following cost function (linear in $R_{S}\left(G_{Q}\right)$):

$$
C m R_{S}\left(G_{Q}\right)+\operatorname{KL}(Q \| P)
$$

- However, we have hyperparameter C to tune (in contrast with the bound of Corollary 2.1).
- Corollary 2.1 gives a bound which is always tighter except for a narrow range of C values.
- In fact, if we would replace $5(\mathrm{~m})$ by one, Corollary 2.1 would always give a tighter bound.

Observations about Corollary 2.2

- G_{Q} is minimizing the bound of Corollary 2.2 iff it minimizes the following cost function (linear in $R_{S}\left(G_{Q}\right)$):

$$
C m R_{S}\left(G_{Q}\right)+\operatorname{KL}(Q \| P)
$$

- However, we have hyperparameter C to tune (in contrast with the bound of Corollary 2.1).
- Corollary 2.1 gives a bound which is always tighter except for a narrow range of C values.
- In fact, if ine mould replace ह(m) by one, Corollary 2.1 would always give a tighter bound

Observations about Corollary 2.2

- G_{Q} is minimizing the bound of Corollary 2.2 iff it minimizes the following cost function (linear in $R_{S}\left(G_{Q}\right)$):

$$
C m R_{S}\left(G_{Q}\right)+\operatorname{KL}(Q \| P)
$$

- However, we have hyperparameter C to tune (in contrast with the bound of Corollary 2.1).
- Corollary 2.1 gives a bound which is always tighter except for a narrow range of C values.
- In fact, if we would replace $\xi(m)$ by one, Corollary 2.1 would always give a tighter bound.

Linear classifiers

- Each \mathbf{x} is mapped to a high-dimensional feature vector $\boldsymbol{\phi}(\mathbf{x})$:

$$
\phi(\mathbf{x}) \stackrel{\text { def }}{=}\left(\phi_{1}(\mathbf{x}), \ldots, \phi_{N}(\mathbf{x})\right) .
$$

- The output $h_{\mathbf{v}}(\mathbf{x})$ of linear classifier $h_{\mathbf{v}}$ with weight vector \mathbf{v} is

Linear classifiers

- Each \mathbf{x} is mapped to a high-dimensional feature vector $\boldsymbol{\phi}(\mathbf{x})$:

$$
\phi(\mathbf{x}) \stackrel{\text { def }}{=}\left(\phi_{1}(\mathbf{x}), \ldots, \phi_{N}(\mathbf{x})\right) .
$$

- ϕ is often implicitly given by a Mercer kernel

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\phi(\mathbf{x}) \cdot \phi\left(\mathbf{x}^{\prime}\right) .
$$

- Each posterior Q_{w} is an isotropic Gaussian centered on w

Linear classifiers

- Each \mathbf{x} is mapped to a high-dimensional feature vector $\boldsymbol{\phi}(\mathbf{x})$:

$$
\phi(\mathbf{x}) \stackrel{\text { def }}{=}\left(\phi_{1}(\mathbf{x}), \ldots, \phi_{N}(\mathbf{x})\right) .
$$

- ϕ is often implicitly given by a Mercer kernel

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\phi(\mathbf{x}) \cdot \phi\left(\mathbf{x}^{\prime}\right) .
$$

- The output $h_{\mathbf{v}}(\mathbf{x})$ of linear classifier $h_{\mathbf{v}}$ with weight vector \mathbf{v} is given by

$$
h_{\mathbf{v}}(\mathbf{x})=\operatorname{sgn}(\mathbf{v} \cdot \phi(\mathbf{x})) .
$$

- Each posterior Q_{w} is an isotropic Gaussian centered on w

Linear classifiers

- Each \mathbf{x} is mapped to a high-dimensional feature vector $\boldsymbol{\phi}(\mathbf{x})$:

$$
\phi(\mathbf{x}) \stackrel{\text { def }}{=}\left(\phi_{1}(\mathbf{x}), \ldots, \phi_{N}(\mathbf{x})\right) .
$$

- ϕ is often implicitly given by a Mercer kernel

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\phi(\mathbf{x}) \cdot \phi\left(\mathbf{x}^{\prime}\right) .
$$

- The output $h_{\mathbf{v}}(\mathbf{x})$ of linear classifier $h_{\mathbf{v}}$ with weight vector \mathbf{v} is given by

$$
h_{\mathbf{v}}(\mathbf{x})=\operatorname{sgn}(\mathbf{v} \cdot \phi(\mathbf{x})) .
$$

- Each posterior $Q_{\mathbf{w}}$ is an isotropic Gaussian centered on w:

$$
Q_{\mathbf{w}}(\mathbf{v})=\left(\frac{1}{\sqrt{2 \pi}}\right)^{N} \exp \left(-\frac{1}{2}\|\mathbf{v}-\mathbf{w}\|^{2}\right)
$$

Bayes-equivalent classifiers

- With this choice for Q_{w}, the majority vote $B_{Q_{w}}$ is the same classifier as h_{w} since:

$$
B_{Q_{\mathbf{w}}}(\mathbf{x})=\operatorname{sgn}\left(\underset{\mathbf{v} \sim Q_{\mathbf{w}}}{\mathbf{E}} \operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}))\right)=\operatorname{sgn}(\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}))=h_{\mathbf{w}}(\mathbf{x})
$$

Thus $R\left(h_{w}\right)=R\left(B_{Q_{w}}\right) \leq 2 R\left(G_{Q_{w}}\right)$: an upper bound on $R\left(G_{Q_{w}}\right)$ also provides an upper bound on $R\left(h_{w}\right)$ The prior $P_{w_{n}}$ is also an isotropic Gaussian centerer on w_{p} Consequently:

Numerical Results

Bayes-equivalent classifiers

- With this choice for Q_{w}, the majority vote $B_{Q_{w}}$ is the same classifier as h_{w} since:

$$
B_{Q_{\mathbf{w}}}(\mathbf{x})=\operatorname{sgn}\left(\underset{\mathbf{v} \sim Q_{\mathbf{w}}}{\mathbf{E}} \operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}))\right)=\operatorname{sgn}(\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}))=h_{\mathbf{w}}(\mathbf{x})
$$

- Thus $R\left(h_{\mathbf{w}}\right)=R\left(B_{Q_{\mathbf{w}}}\right) \leq 2 R\left(G_{Q_{\mathbf{w}}}\right)$: an upper bound on $R\left(G_{Q_{w}}\right)$ also provides an upper bound on $R\left(h_{\mathbf{w}}\right)$.
The prior $P_{w_{p}}$ is also an isotropic Gaussian cen
Consequently:

$$
\operatorname{KL}\left(Q_{w} \| P_{w_{p}}\right)=\frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{p}\right\|^{2} .
$$

Bayes-equivalent classifiers

- With this choice for Q_{w}, the majority vote $B_{Q_{w}}$ is the same classifier as h_{w} since:

$$
B_{Q_{\mathbf{w}}}(\mathbf{x})=\operatorname{sgn}\left(\underset{\mathbf{v} \sim Q_{\mathbf{w}}}{\mathbf{E}} \operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}))\right)=\operatorname{sgn}(\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}))=h_{\mathbf{w}}(\mathbf{x})
$$

- Thus $R\left(h_{w}\right)=R\left(B_{Q_{w}}\right) \leq 2 R\left(G_{Q_{w}}\right)$: an upper bound on $R\left(G_{Q_{w}}\right)$ also provides an upper bound on $R\left(h_{w}\right)$.
- The prior $P_{\mathbf{w}_{p}}$ is also an isotropic Gaussian centered on \mathbf{w}_{p}. Consequently:

$$
\mathrm{KL}\left(Q_{\mathbf{w}} \| P_{\mathbf{w}_{p}}\right)=\frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{p}\right\|^{2} .
$$

Gibbs' risk

We need to compute Gibb's risk $R_{(x, y)}\left(G_{Q_{w}}\right)$ on ($\left.\mathbf{x}, y\right)$ since:

$$
\begin{array}{r}
R_{(\mathbf{x}, y)}\left(G_{Q_{w}}\right) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{N}} d \mathbf{v} Q_{w}(\mathbf{v}) \iota(y \mathbf{v} \cdot \phi(\mathbf{x})<0) \\
R\left(G_{Q_{w}}\right)=\underset{(\mathbf{x}, y) \sim D}{\mathbf{E}} R_{(\mathrm{x}, \mathrm{y})}\left(G_{Q_{w}}\right) \quad ; \quad R_{S}\left(G_{Q_{w}}\right)=\frac{1}{m} \sum_{i=1}^{m} R_{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)}\left(G_{Q_{w}}\right) .
\end{array}
$$

As in Langford (2005), the Gaussian integral gives:

Gibbs' risk

We need to compute Gibb's risk $R_{(x, y)}\left(G_{Q_{w}}\right)$ on ($\left.\mathbf{x}, y\right)$ since:

$$
\begin{aligned}
& R_{(\mathrm{x}, \mathrm{y})}\left(G_{Q_{w}}\right) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{N}} d \mathbf{v} Q_{\mathbf{w}}(\mathbf{v}) l(y \mathbf{v} \cdot \phi(\mathbf{x})<0) \\
& R\left(G_{Q_{w}}\right)=\underset{(\mathrm{x}, y) \sim D}{\mathbf{E}} R_{(\mathrm{x}, y)}\left(G_{Q_{w}}\right) \quad ; \quad R_{S}\left(G_{Q_{w}}\right)=\frac{1}{m} \sum_{i=1}^{m} R_{\left(\mathbf{x}_{i}, y_{i}\right)}\left(G_{Q_{w}}\right) .
\end{aligned}
$$

As in Langford (2005), the Gaussian integral gives:

$$
\begin{aligned}
R_{(\mathbf{x}, y)}\left(G_{\left.Q_{\mathbf{w}}\right)}\right. & =\Phi\left(\|\mathbf{w}\| \Gamma_{\mathbf{w}}(\mathbf{x}, y)\right) ; \text { where: } \\
\Gamma_{\mathbf{w}}(\mathbf{x}, y) \stackrel{\text { def }}{=} \frac{y \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})}{\|\mathbf{w}\|\|\phi(\mathbf{x})\|} & ; \Phi(a) \stackrel{\text { def }}{=} \frac{1}{\sqrt{2 \pi}} \int_{a}^{\infty} \exp \left(-\frac{1}{2} x^{2}\right) d x .
\end{aligned}
$$

Probit loss

$\Phi(||w|| \Gamma)$

Objective function from Corollary 2.1

From Corollary 2.1, we need to find winimizing:

$$
\begin{aligned}
& \mathcal{B}(S, \mathbf{w}, \delta) \stackrel{\text { def }}{=} \sup \left\{\epsilon: \operatorname{kl}\left(R_{S}\left(G_{Q_{\mathbf{w}}}\right) \| \epsilon\right) \leq\right. \\
&\left.\frac{1}{m}\left[\mathrm{KL}\left(Q_{\mathbf{w}} \| P_{\mathbf{w}_{p}}\right)+\ln \frac{\xi(m)}{\delta}\right]\right\} \quad F(2.1),
\end{aligned}
$$

for a fixed δ (say $\delta=0.05$).
subject to:

Objective function from Corollary 2.1

From Corollary 2.1, we need to find winimizing:

$$
\begin{aligned}
& \mathcal{B}(S, \mathbf{w}, \delta) \stackrel{\text { def }}{=} \sup \left\{\epsilon: \operatorname{kl}\left(R_{S}\left(G_{Q_{\mathbf{w}}}\right) \| \epsilon\right) \leq\right. \\
&\left.\frac{1}{m}\left[\operatorname{KL}\left(Q_{\mathbf{w}} \| P_{\mathbf{w}_{p}}\right)+\ln \frac{\xi(m)}{\delta}\right]\right\} \quad F(2.1),
\end{aligned}
$$

for a fixed δ (say $\delta=0.05$). Hence we need to find \mathbf{w} minimizing \mathcal{B} subject to:

$$
\begin{aligned}
\mathrm{kl}\left(R_{S}\left(G_{Q_{\mathbf{w}}}\right) \| \mathcal{B}\right) & =\frac{1}{m}\left[\operatorname{KL}\left(Q_{\mathbf{w}} \| P_{\mathbf{w}_{p}}\right)+\ln \frac{\xi(m)}{\delta}\right] \\
\mathcal{B} & >R_{S}\left(G_{Q_{\mathbf{w}}}\right)
\end{aligned}
$$

Objective function from Corollary 2.2

From Corollary 2.2, for fixed C and \mathbf{w}_{p}, we need to find \mathbf{w} minimizing:

$$
\begin{aligned}
& \operatorname{Cm} R_{S}\left(G_{Q_{\mathbf{w}}}\right)+\operatorname{KL}\left(Q_{\mathbf{w}} \| P_{\mathbf{w}_{p}}\right)= \\
& \qquad C \sum_{i=1}^{m} \Phi\left(\frac{y_{i} \mathbf{w} \cdot \boldsymbol{\phi}\left(\mathbf{x}_{i}\right)}{\left\|\phi\left(\mathbf{x}_{i}\right)\right\|}\right)+\frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{p}\right\|^{2} \quad\left(F_{2.2}\right),
\end{aligned}
$$

We have the same regularizer as the SVM when $\mathbf{w}_{p}=\mathbf{0}$ (absence of prior knowledge). Indeed. SVM minimizes:

Objective function from Corollary 2.2

From Corollary 2.2, for fixed C and \mathbf{w}_{p}, we need to find \mathbf{w} minimizing:

$$
\begin{aligned}
& C m R_{S}\left(G_{Q_{w}}\right)+\operatorname{KL}\left(Q_{\mathbf{w}} \| P_{\mathbf{w}_{p}}\right)= \\
& \qquad C \sum_{i=1}^{m} \Phi\left(\frac{y_{i} \mathbf{w} \cdot \boldsymbol{\phi}\left(\mathbf{x}_{i}\right)}{\left\|\phi\left(\mathbf{x}_{i}\right)\right\|}\right)+\frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{p}\right\|^{2} \quad\left(F_{2.2}\right)
\end{aligned}
$$

We have the same regularizer as the SVM when $\mathbf{w}_{p}=\mathbf{0}$ (absence of prior knowledge). Indeed, SVM minimizes:

$$
C \sum_{i=1}^{m} \max \left(0,1-y_{i} \mathbf{w} \cdot \phi\left(\mathbf{x}_{i}\right)\right)+\frac{1}{2}\|\mathbf{w}\|^{2}
$$

(The probit loss is replaced by the convex hinge loss.)

Gradient of the PAC-Bayes bound

- We performed the Polak-Ribière conjugate gradient descent (GSL implementation).

Gradient of the PAC-Bayes bound

- We performed the Polak-Ribière conjugate gradient descent (GSL implementation).
- For this, we only need to compute the gradient $\nabla_{\mathbf{w}} \mathcal{B}$.

Gradient of the PAC-Bayes bound

- We performed the Polak-Ribière conjugate gradient descent (GSL implementation).
- For this, we only need to compute the gradient $\nabla_{\mathbf{w}} \mathcal{B}$.

For $F_{2.1}$ and $F_{2.2}$, we find that $\nabla_{\mathbf{w}} \mathcal{B}$ is given, respectively, by:

Gradient of the PAC-Bayes bound

- We performed the Polak-Ribière conjugate gradient descent (GSL implementation).
- For this, we only need to compute the gradient $\nabla_{\mathbf{w}} \mathcal{B}$.

For $F_{2.1}$ and $F_{2.2}$, we find that $\nabla_{\mathbf{w}} \mathcal{B}$ is given, respectively, by:

$$
\begin{aligned}
\frac{1}{m} \frac{\mathcal{B}(1-\mathcal{B})}{\mathcal{B}-R_{S}}\left[\mathbf{w}-\mathbf{w}_{p}+\right. & \ln \left(\frac{\mathcal{B}\left(1-R_{S}\right)}{R_{S}(1-\mathcal{B})}\right) \\
& \left.\sum_{i=1}^{m} \Phi^{\prime}\left(\frac{y_{i} \mathbf{w} \cdot \phi\left(\mathbf{x}_{i}\right)}{\left\|\phi\left(\mathbf{x}_{i}\right)\right\|}\right) \frac{y_{i} \phi\left(\mathbf{x}_{i}\right)}{\left\|\phi\left(\mathbf{x}_{i}\right)\right\|}\right]\left(\text { for } F_{2.1}\right)
\end{aligned}
$$

Gradient of the PAC-Bayes bound

- We performed the Polak-Ribière conjugate gradient descent (GSL implementation).
- For this, we only need to compute the gradient $\nabla_{\mathbf{w}} \mathcal{B}$.

For $F_{2.1}$ and $F_{2.2}$, we find that $\nabla_{\mathbf{w}} \mathcal{B}$ is given, respectively, by:

$$
\begin{aligned}
& \frac{1}{m} \frac{\mathcal{B}(1-\mathcal{B})}{\mathcal{B}-R_{S}}\left[\mathbf{w}-\mathbf{w}_{p}+\ln \left(\frac{\mathcal{B}\left(1-R_{S}\right)}{R_{S}(1-\mathcal{B})}\right)\right. \\
& \left.\qquad \sum_{i=1}^{m} \Phi^{\prime}\left(\frac{y_{i} \mathbf{w} \cdot \phi\left(\mathbf{x}_{i}\right)}{\left\|\phi\left(\mathbf{x}_{i}\right)\right\|}\right) \frac{y_{i} \phi\left(\mathbf{x}_{i}\right)}{\left\|\phi\left(\mathbf{x}_{i}\right)\right\|}\right]\left(\text { for } F_{2.1}\right) \\
& C \sum_{i=1}^{m} \Phi^{\prime}\left(\frac{y_{i} \mathbf{w} \cdot \boldsymbol{\phi}\left(\mathbf{x}_{i}\right)}{\left\|\boldsymbol{\phi}\left(\mathbf{x}_{i}\right)\right\|}\right) \frac{y_{i} \phi\left(\mathbf{x}_{i}\right)}{\left\|\phi\left(\mathbf{x}_{i}\right)\right\|}+\left(\mathbf{w}-\mathbf{w}_{p}\right)\left(\text { for } F_{2.2}\right) .
\end{aligned}
$$

Why gradient descent?

- Does there exists a more efficient learning algorithm?

Why gradient descent?

- Does there exists a more efficient learning algorithm?
- The probit loss $\Phi(a)$ is quasi-convex in a. (Nice!)

Why gradient descent?

- Does there exists a more efficient learning algorithm?
- The probit loss $\Phi(a)$ is quasi-convex in a. (Nice!)
- The sum of two quasi-convex functions is (generally) not quasi-convex.

Why gradient descent?

- Does there exists a more efficient learning algorithm?
- The probit loss $\Phi(a)$ is quasi-convex in a. (Nice!)
- The sum of two quasi-convex functions is (generally) not quasi-convex.
- Hence, $R_{S}\left(G_{Q_{w}}\right)$ is (generally) not quasi-convex. (Not nice)

Why gradient descent?

- Does there exists a more efficient learning algorithm?
- The probit loss $\Phi(a)$ is quasi-convex in a. (Nice!)
- The sum of two quasi-convex functions is (generally) not quasi-convex.
- Hence, $R_{S}\left(G_{Q_{w}}\right)$ is (generally) not quasi-convex. (Not nice)
- $\mathcal{B}(S, \mathbf{w}, \delta)$ does have several local minima on some data sets. This is especially true for $F_{2.2}$ when C is large.
- Each function minimization of $F_{2.2}$ consisted of k different gradient-descent runs. (We used $k=10$ for $C \leq 10$, and $k=100$ for $C>10$.)

Why gradient descent?

- Does there exists a more efficient learning algorithm?
- The probit loss $\Phi(a)$ is quasi-convex in a. (Nice!)
- The sum of two quasi-convex functions is (generally) not quasi-convex.
- Hence, $R_{S}\left(G_{Q_{w}}\right)$ is (generally) not quasi-convex. (Not nice)
- $\mathcal{B}(S, \mathbf{w}, \delta)$ does have several local minima on some data sets. This is especially true for $F_{2.2}$ when C is large.
- Each function minimization of $F_{2.2}$ consisted of k different gradient-descent runs. (We used $k=10$ for $C \leq 10$, and $k=100$ for $C>10$.)

Primal and Dual Versions

- Each proposed algorithm has a primal $\left(\left\{w_{1}, \ldots, w_{N}\right\}\right)$ and a dual $\left(\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}\right)$ version

$$
\mathbf{w}=\sum_{i=1}^{m} \alpha_{i} y_{i} \phi\left(\mathbf{x}_{i}\right) \quad ; \quad k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\phi(\mathbf{x}) \cdot \boldsymbol{\phi}\left(\mathbf{x}^{\prime}\right)
$$

- Decision stumps was used for the primal versions (and comnared with AdaRonst)
- The RBF kernel was used for the dual versions (and compared with the soft-margin SVM)

Primal and Dual Versions

- Each proposed algorithm has a primal $\left(\left\{w_{1}, \ldots, w_{N}\right\}\right)$ and a dual $\left(\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}\right)$ version

$$
\mathbf{w}=\sum_{i=1}^{m} \alpha_{i} y_{i} \phi\left(\mathbf{x}_{i}\right) \quad ; \quad k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\boldsymbol{\phi}(\mathbf{x}) \cdot \boldsymbol{\phi}\left(\mathbf{x}^{\prime}\right)
$$

- Decision stumps was used for the primal versions (and compared with AdaBoost).
The RBF kernel was used for the dual versions (and compared with the soft-margin SVM).

Primal and Dual Versions

- Each proposed algorithm has a primal $\left(\left\{w_{1}, \ldots, w_{N}\right\}\right)$ and a dual $\left(\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}\right)$ version

$$
\mathbf{w}=\sum_{i=1}^{m} \alpha_{i} y_{i} \phi\left(\mathbf{x}_{i}\right) \quad ; \quad k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\phi(\mathbf{x}) \cdot \phi\left(\mathbf{x}^{\prime}\right)
$$

- Decision stumps was used for the primal versions (and compared with AdaBoost).
- The RBF kernel was used for the dual versions (and compared with the soft-margin SVM).

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2} / \sigma^{2}\right)
$$

Three Learning Algorithms

- PBGD1 uses P_{0} (i.e., $\mathbf{w}_{p}=\mathbf{0}$) to learn $Q_{\mathbf{w}}$ by minimizing $F_{2.1}$ (with $\delta=.05$).
\qquad

Three Learning Algorithms

- PBGD1 uses P_{0} (i.e., $\mathbf{w}_{p}=\mathbf{0}$) to learn $Q_{\mathbf{w}}$ by minimizing $F_{2.1}$ (with $\delta=.05$).
- PBGD3 minimizes $F_{2.2}$ (with P_{0}) but uses 10 -fold $C V$ to choose the value of C.

PBGD2 uses half of the training data to "learn a good prior

Three Learning Algorithms

- PBGD1 uses P_{0} (i.e., $\mathbf{w}_{p}=\mathbf{0}$) to learn $Q_{\mathbf{w}}$ by minimizing $F_{2.1}$ (with $\delta=.05$).
- PBGD3 minimizes $F_{2.2}$ (with P_{0}) but uses 10 -fold $C V$ to choose the value of C.
- PBGD2 uses half of the training data to "learn a good prior".

Three Learning Algorithms

- PBGD1 uses P_{0} (i.e., $\mathbf{w}_{p}=\mathbf{0}$) to learn Q_{w} by minimizing $F_{2.1}$ (with $\delta=.05$).
- PBGD3 minimizes $F_{2.2}$ (with P_{0}) but uses 10 -fold CV to choose the value of C.
- PBGD2 uses half of the training data to "learn a good prior".
- Minimize $F_{2.2}$ (with P_{0}) on first half of training data for $C \in\left\{10^{k}: k=0, \ldots, 6\right\}$. This gives $\left\{\mathbf{w}_{0}, \ldots, \mathbf{w}_{6}\right\}$.
- REMARK: PBGD1 and PBGD2 are true bound-minimization algorithms (but not PBGD3)

Three Learning Algorithms

- PBGD1 uses $P_{\mathbf{0}}$ (i.e., $\mathbf{w}_{p}=\mathbf{0}$) to learn $Q_{\mathbf{w}}$ by minimizing $F_{2.1}$ (with $\delta=.05$).
- PBGD3 minimizes $F_{2.2}$ (with P_{0}) but uses 10 -fold $C V$ to choose the value of C.
- PBGD2 uses half of the training data to "learn a good prior".
- Minimize $F_{2.2}$ (with P_{0}) on first half of training data for $C \in\left\{10^{k}: k=0, \ldots, 6\right\}$. This gives $\left\{\mathbf{w}_{0}, \ldots, \mathbf{w}_{6}\right\}$.
- Minimize $F_{2.1}$ with $P_{w_{0}}, \ldots, P_{w_{6}}$ on the other half of examples and keep the final classifier that minimizes Corollary 2.1.
- REMARK: PBGD1 and PBGD2 are true
bound-minimization algorithms (but not PBGD3)

Three Learning Algorithms

- PBGD1 uses $P_{\mathbf{0}}$ (i.e., $\mathbf{w}_{p}=\mathbf{0}$) to learn $Q_{\mathbf{w}}$ by minimizing $F_{2.1}$ (with $\delta=.05$).
- PBGD3 minimizes $F_{2.2}$ (with P_{0}) but uses 10 -fold $C V$ to choose the value of C.
- PBGD2 uses half of the training data to "learn a good prior".
- Minimize $F_{2.2}$ (with P_{0}) on first half of training data for $C \in\left\{10^{k}: k=0, \ldots, 6\right\}$. This gives $\left\{\mathbf{w}_{0}, \ldots, \mathbf{w}_{6}\right\}$.
- Minimize $F_{2.1}$ with $P_{\mathbf{w}_{0}}, \ldots, P_{\mathbf{w}_{6}}$ on the other half of examples and keep the final classifier that minimizes Corollary 2.1.
- REMARK: PBGD1 and PBGD2 are true bound-minimization algorithms (but not PBGD3).

Experimental Methodology

- Extensive results on UCI and MNIST data sets.

> About half of the data was used for training and half for testing (except for MNIST and Letters where more than 65% was used for testing). The binomial tail inversion test set method (Langford, JMLR 2005) was used to determine statistical significance: see the SSB column in the next tables.

Experimental Methodology

- Extensive results on UCI and MNIST data sets.
- About half of the data was used for training and half for testing (except for MNIST and Letters where more than 65\% was used for testing).
The binomial tail inversion test set method (Langford, JMLR 2005) was used to determine statistical significance: see the SSB column in the next tables.

Experimental Methodology

- Extensive results on UCI and MNIST data sets.
- About half of the data was used for training and half for testing (except for MNIST and Letters where more than 65\% was used for testing).
- The binomial tail inversion test set method (Langford, JMLR 2005) was used to determine statistical significance: see the SSB column in the next tables.

Dataset	(A) AdaBoost		(1) PBGD1		(2) PBGD2		(3) PBGD3		SSB
Name	Risk	Bound	Risk	Bound	Risk	Bound	Risk	Bound	
Usvotes	0.055	0.346	0.085	0.207	0.060	0.165	0.060	0.261	
Credit-A	0.170	0.504	0.177	0.375	0.187	0.272	0.143	0.420	
Glass	0.178	0.636	0.196	0.562	0.168	0.395	0.150	0.581	
Haberman	0.260	0.590	0.273	0.422	0.267	0.465	0.273	0.424	
Heart	0.259	0.569	0.170	0.461	0.190	0.379	0.184	0.473	
Sonar	0.231	0.644	0.269	0.579	0.173	0.547	0.125	0.622	
BreastCancer	0.053	0.295	0.041	0.129	0.047	0.104	0.044	0.190	
Tic-tac-toe	0.357	0.483	0.294	0.462	0.207	0.302	0.207	0.474	$2,3<\mathrm{A}, 1$
lonosphere	0.120	0.602	0.120	0.425	0.109	0.347	0.103	0.557	
Wdbc	0.049	0.447	0.042	0.272	0.049	0.147	0.035	0.319	
MNIST:Ovs8	0.008	0.528	0.015	0.191	0.011	0.062	0.006	0.262	
MNIST:1vs7	0.013	0.541	0.020	0.184	0.015	0.050	0.016	0.233	
MNIST:1vs8	0.025	0.552	0.037	0.247	0.027	0.087	0.018	0.305	$3<1$
MNIST:2vs3	0.047	0.558	0.046	0.264	0.040	0.105	0.034	0.356	
Letter:AvsB	0.010	0.254	0.009	0.180	0.007	0.065	0.007	0.180	
Letter:DvsO	0.036	0.378	0.043	0.314	0.033	0.090	0.024	0.360	
Letter:OvsQ	0.038	0.431	0.061	0.357	0.053	0.106	0.042	0.454	
Adult	0.149	0.394	0.168	0.270	0.169	0.209	0.159	0.364	$\mathrm{A}<1,2$
Mushroom	0.000	0.200	0.046	0.130	0.016	0.030	0.002	0.150	A, $3<2<1$

Dataset	(S) SVM		(1) PBGD1		(2) PBGD2		(3) PBGD3		SSB
Name	Risk	Bound	Risk	Bound	Risk	Bound	Risk	Bound	
Usvotes	0.055	0.370	0.080	0.244	0.050	0.153	0.075	0.332	
Credit-A	0.183	0.591	0.150	0.341	0.150	0.248	0.160	0.375	
Glass	0.178	0.571	0.168	0.539	0.215	0.430	0.168	0.541	
Haberman	0.280	0.423	0.280	0.417	0.327	0.444	0.253	0.555	
Heart	0.197	0.513	0.190	0.441	0.184	0.400	0.197	0.520	
Sonar	0.163	0.599	0.250	0.560	0.173	0.477	0.144	0.585	
BreastCancer	0.038	0.146	0.044	0.132	0.041	0.101	0.047	0.162	
Tic-tac-toe	0.081	0.555	0.365	0.426	0.173	0.287	0.077	0.548	S, $3<2<$
lonosphere	0.097	0.531	0.114	0.395	0.103	0.376	0.091	0.465	
Wdbc	0.074	0.400	0.074	0.366	0.067	0.298	0.074	0.367	
MNIST:Ovs8	0.003	0.257	0.009	0.202	0.007	0.058	0.004	0.320	
MNIST:1vs7	0.011	0.216	0.014	0.161	0.009	0.052	0.010	0.250	
MNIST:1vs8	0.011	0.306	0.014	0.204	0.011	0.060	0.010	0.291	
MNIST:2vs3	0.020	0.348	0.038	0.265	0.028	0.096	0.023	0.326	S<1
Letter:AvsB	0.001	0.491	0.005	0.170	0.003	0.064	0.001	0.485	
Letter:DvsO	0.014	0.395	0.017	0.267	0.024	0.086	0.013	0.350	
Letter:OvsQ	0.015	0.332	0.029	0.299	0.019	0.078	0.014	0.329	
Adult	0.159	0.535	0.173	0.274	0.180	0.224	0.164	0.372	S, $3<2$
Mushroom	0.000	0.213	0.007	0.119	0.001	0.011	0.000	0.167	S, $2,3<1$

Conclusion

- PBGD2 is better than PBGD1 (for R_{T} and bound).

Conclusion

- PBGD2 is better than PBGD1 (for R_{T} and bound).
- Using half of the data to learn a prior helps.

Conclusion

- PBGD2 is better than PBGD1 (for R_{T} and bound).
- Using half of the data to learn a prior helps.
- PBGD3 is a bit better than PBGD2.

Conclusion

- PBGD2 is better than PBGD1 (for R_{T} and bound).
- Using half of the data to learn a prior helps.
- PBGD3 is a bit better than PBGD2.
- The bound is a bit worse than CV for finding quantitatively the right trade-off between $R_{S}\left(G_{Q}\right)$ and $\mathrm{KL}(Q \| P)$.

Conclusion

- PBGD2 is better than PBGD1 (for R_{T} and bound).
- Using half of the data to learn a prior helps.
- PBGD3 is a bit better than PBGD2.
- The bound is a bit worse than CV for finding quantitatively the right trade-off between $R_{S}\left(G_{Q}\right)$ and $\mathrm{KL}(Q \| P)$.
- PBGD3 is a little bit better than AdaBoost and SVM (perhaps) but it is much slower (several local minima).
- PBGD2 is the best choice if obtaining a good guarantee on the true risk is mandatory.

Conclusion

- PBGD2 is better than PBGD1 (for R_{T} and bound).
- Using half of the data to learn a prior helps.
- PBGD3 is a bit better than PBGD2.
- The bound is a bit worse than CV for finding quantitatively the right trade-off between $R_{S}\left(G_{Q}\right)$ and $\mathrm{KL}(Q \| P)$.
- PBGD3 is a little bit better than AdaBoost and SVM (perhaps) but it is much slower (several local minima).
- In practice, I would still use the SVM instead of PBGD3.
- PBGD2 is the best choice if obtaining a good guarantee on the true risk is mandatory.

Conclusion

- PBGD2 is better than PBGD1 (for R_{T} and bound).
- Using half of the data to learn a prior helps.
- PBGD3 is a bit better than PBGD2.
- The bound is a bit worse than CV for finding quantitatively the right trade-off between $R_{S}\left(G_{Q}\right)$ and $\mathrm{KL}(Q \| P)$.
- PBGD3 is a little bit better than AdaBoost and SVM (perhaps) but it is much slower (several local minima).
- In practice, I would still use the SVM instead of PBGD3.
- PBGD2 is the best choice if obtaining a good guarantee on the true risk is mandatory.

