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Motivation
In search of an optimization problem for learning
PAC-Bayesian bound minimization
Summary

In search of an optimization problem for learning

@ The goal of the learner is to try to find a classifier h with the
smallest possible risk R(h)

R < P {h(x) £y} = B () £ ).
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PAC-Bayesian bound minimization
Summary

In search of an optimization problem for learning

@ The goal of the learner is to try to find a classifier h with the
smallest possible risk R(h)

R < P {h(x) £y} = B () £ ).

@ However, we do not know the data-generating distribution D.
def
@ We have only access to S = {(x1,1) ... (Xm, Ym)}: a
training set of m examples, each generated according to D.

@ What should the learner optimize on S to obtain a
classifier h having the smallest possible risk R(h)?
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PAC-Bayesian bound minimization

@ Several objective functions (to minimize on S) have been
proposed.
e The soft-margin SVM, AdaBoost, ridge regression. . .
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@ But the final rigorous (and accepted) guarantee is always a
risk bound that holds uniformly over a space of classifiers.
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Motivation
In search of an optimization problem for learning
PAC-Bayesian bound minimization
Summary

PAC-Bayesian bound minimization

@ Several objective functions (to minimize on S) have been
proposed.

e The soft-margin SVM, AdaBoost, ridge regression. . .
@ But the final rigorous (and accepted) guarantee is always a
risk bound that holds uniformly over a space of classifiers.

@ Let us try to design an efficient learning algorithm that
minimizes the PAC-Bayes bound.
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learning algorithms.

P. Germain, A. Lacasse, F. Laviolette, M. Marchand PAC-Bayesian Learning of Linear Classifiers




Motivation
In search of an optimization problem for learning
PAC-Bayesian bound minimization
Summary

Summary

@ A simple and general theorem from which all other known
PAC-Bayes bound can be simply derived.

@ Specialization to linear classifiers.

o Gradient descent of the PAC-Bayes bound: three different
learning algorithms.

@ Extensive numerical results and comparison with AdaBoost
and the SVM.
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Definitions

The General PAC-Bayes Theorem
The Langford-Seeger bound

The Catoni bound

Simplified PAC-Bayes Theory

Definitions

@ The (true) risk R(h) and training error Rs(h) are defined as:

m

RIS E I(h)£y) 5 Rs()E LS i(hx) £ ).

i=1

" (xy)~D

P. Germain, A. Lacasse, F. Laviolette, M. Marchand PAC-Bayesian Learning of Linear Classifiers 5/25



Definitions

The General PAC-Bayes Theorem
The Langford-Seeger bound

The Catoni bound
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Definitions

@ The (true) risk R(h) and training error Rs(h) are defined as:

def 1 =
R(hy = E I(h(x)#y) ; Rs(h)=— 1(h(x;) # vi) .
()% 5,1 #£5) & Rs(h) ™ T b(x) # )
@ The learner's goal is to choose a posterior distribution @ on
a space H of classifiers such that the risk of the Q-weighted
majority vote B is as small as possible.
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Definitions

@ The (true) risk R(h) and training error Rs(h) are defined as:

def 1 “
R (B 100 £ ) i Re(h) ™= 150 1(h(s) .-
@ The learner's goal is to choose a posterior distribution @ on
a space H of classifiers such that the risk of the Q-weighted
majority vote B is as small as possible.
o PAC-Bayes bounds the risk of the Gibbs classifier Go. To
predict the label of x, Gg draws h from H and predicts h(x).
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Definitions

@ The (true) risk R(h) and training error Rs(h) are defined as:

def 1 “
R (B 100 £ ) i Re(h) ™= 150 1(h(s) .-
@ The learner's goal is to choose a posterior distribution @ on
a space H of classifiers such that the risk of the Q-weighted
majority vote B is as small as possible.
o PAC-Bayes bounds the risk of the Gibbs classifier Go. To
predict the label of x, Gg draws h from H and predicts h(x).
@ The risk and the training error of Gg are thus defined as:

R(Go) = ,E R(h) i Rs(Go) = E_Rs(h).
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Definitions

The General PAC-Bayes Theorem
The Langford-Seeger bound

The Catoni bound

Simplified PAC-Bayes Theory

Gg, Bg, and KL(Q||P)

e If Bg misclassifies x, then at least half of the classifiers (under
measure Q) err on x. Then R(Bg) < 2R(Gg): An upper
bound on R(Gp) also gives an upper bound on R(Bg).
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Simplified PAC-Bayes Theory

Gg, Bg, and KL(Q||P)

e If Bg misclassifies x, then at least half of the classifiers (under
measure Q) err on x. Then R(Bg) < 2R(Gg): An upper
bound on R(Gp) also gives an upper bound on R(Bg).

@ PAC-Bayes makes use of a prior distribution P on H.

@ The risk bound depends on the Kullback-Leibler divergence
KL(Q||P):

Q(h)

hEQ In 7P(h) .

KL(Q|IP) =
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Simplified PAC-Bayes Theory The General PAC-Bayes Theorem
The Langford-Seeger bound

The Catoni bound

Gg, Bg, and KL(Q||P)

e If Bg misclassifies x, then at least half of the classifiers (under
measure Q) err on x. Then R(Bg) < 2R(Gg): An upper
bound on R(Gp) also gives an upper bound on R(Bg).

@ PAC-Bayes makes use of a prior distribution P on H.

@ The risk bound depends on the Kullback-Leibler divergence
KL(Q||P):

def

KL(Q||P) ()

E In——=.
h~Q " P(h)
@ We will also make use of the of the KL divergence between

Bernoulli distributions of probability of success p and g:

-9

1
kl(g,p) = qln%+(1—q)|n1
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P Definitions
Simplified PAC-Bayes Theory The General PAC-Bayes Theorem
The Langford-Seeger bound
The Catoni bound

The General PAC-Bayes Theorem

Theorem 1

For any distribution D, for any set H of classifiers, for any prior
distribution P of support H, for any ¢ € (0, 1], and for any convex
function D : [0, 1] x [0,1] — R, we have

Pr

JPr (VQonH: D(Rs(Gg), R(Gq)) <

[KL(QIIP)JrIn ((15 E E emD(Rs(hLR(h)))D

S~D™ h~P

N

3|+
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P Definitions
Simplified PAC-Bayes Theory The General PAC-Bayes Theorem

The Langford-Seeger bound
The Catoni bound

The Langford (2005) and Seeger (2002) bound

We recover a slightly tighter version if D(q, p) = kl(q, p) and

m
mKkl(Rs(h),R(h))  _ m k(1 _ m—k
SNEDm hEP € kZ:O (k>(k/m) (1 k/m)

L g(m) € o(vm).
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Simplified PAC-Bayes Theory The General PAC-Bayes Theorem

The Langford-Seeger bound

The Catoni bound

The Langford (2005) and Seeger (2002) bound

We recover a slightly tighter version if D(q, p) = kl(q, p) and

m . m m—
S B B, emHEORM) 57 () /mpt(a — /)t
k=0
& ¢(m) € o(/m).

Corollary 2.1

For any D, any H, any P of support H, any § € (0, 1], we have

~

Pr (v Q onM: KI(Rs(Gg), R(Gg)) <

% KL(Q|yP)+|n5(5m)D >1-35,
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Definitions

The General PAC-Bayes Theorem
The Langford-Seeger bound

The Catoni bound

Simplified PAC-Bayes Theory

Graphical illustration of the Langford-Seeger bound

kl(0.1]|R(Q))
0.4
0.3
0.2
0.1
0.1 0.2 0.3 0.4 0.5 R@Q
Borne Inf Borne Sup
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P Definitions
Simplified PAC-Bayes Theory The General PAC-Bayes Theorem
The Langford-Seeger bound
The Catoni bound

A bound also found by Catoni (2007)

Let D(q,p) = F(p) — C-q. Then

mD(Rs(h),R(h)) _ mF(R(h)) -C _ m
5~EDm hEPe hEPe (R(h)e HE R(h))) '
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Definitions

The General PAC-Bayes Theorem
The Langford-Seeger bound

The Catoni bound

Simplified PAC-Bayes Theory

A bound also found by Catoni (2007)

Let D(q,p) = F(p) — C-q. Then

m

mD(Rs(h).R(h) _ mF(R(h)) —C1_
JE Ee E e (R(h)e +(1 R(h)))

Corollary 2.2

For any D, any H, any P of support H, any 4 € (0, 1], and any
positive real number C, we have

V@ onH:
Pr R(GQ) l-e— C{l exp[ (CRS(GQ) 1 — 6.

S~Dm
+LKL(@IP)+mH])] |
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P Definitions
Simplified PAC-Bayes Theory The General PAC-Bayes Theorem
The Langford-Seeger bound
The Catoni bound

Observations about Corollary 2.2

@ Gg is minimizing the bound of Corollary 2.2 iff it minimizes
the following cost function (linear in Rs(Gg)):

CmRs(Gg) + KL(Q||P)
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@ Gg is minimizing the bound of Corollary 2.2 iff it minimizes
the following cost function (linear in Rs(Gg)):

CmRs(Gg) + KL(Q||P)

@ However, we have hyperparameter C to tune (in contrast
with the bound of Corollary 2.1).
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Definitions

The General PAC-Bayes Theorem
The Langford-Seeger bound

The Catoni bound

Simplified PAC-Bayes Theory

Observations about Corollary 2.2

@ Gg is minimizing the bound of Corollary 2.2 iff it minimizes
the following cost function (linear in Rs(Gg)):

CmRs(Gg) + KL(Q||P)

@ However, we have hyperparameter C to tune (in contrast
with the bound of Corollary 2.1).

@ Corollary 2.1 gives a bound which is always tighter except for
a narrow range of C values.

@ In fact, if we would replace £(m) by one, Corollary 2.1 would
always give a tighter bound.
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Linear classifiers
Specialization to Linear Classifiers Bayes-equivalent classifiers
Objective functions to minimize

Linear classifiers

@ Each x is mapped to a high-dimensional feature vector ¢(x):

def

¢(x) = (61(x), .-, on(x))-
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Linear classifiers

@ Each x is mapped to a high-dimensional feature vector ¢(x):

def

¢(x) = (61(x), .-, on(x))-

e ¢ is often implicitly given by a Mercer kernel
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Specialization to Linear Classifiers Bayes-equivalent classifiers
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Linear classifiers

@ Each x is mapped to a high-dimensional feature vector ¢(x):

def

¢(x) = (61(x), .-, on(x))-

e ¢ is often implicitly given by a Mercer kernel
K(x,X') = 6(x) - B(x) .

@ The output hy(x) of linear classifier h, with weight vector v is
given by

h(x) = sgn(v-(x)) -
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Linear classifiers
Specialization to Linear Classifiers Bayes-equivalent classifiers
Objective functions to minimize

Linear classifiers

@ Each x is mapped to a high-dimensional feature vector ¢(x):

def

d(x) = (91(x), ..., on(x)).
@ ¢ is often implicitly given by a Mercer kernel
k(x,x') = ¢(x) - p(xX).
@ The output hy(x) of linear classifier h, with weight vector v is
given by
h(x) = sen(v-o(x))

@ Each posterior Qy is an isotropic Gaussian centered on w:

Q) = () e (2w wi?)
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Linear classifiers
Specialization to Linear Classifiers Bayes-equivalent classifiers
Objective functions to minimize

Bayes-equivalent classifiers

e With this choice for Qy, the majority vote By, is the same
classifier as hy, since:

Bau(x) = sgn( E sgn(v-¢<x>>) — sgn(w-$(x)) = ().

v~ Ww
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Bayes-equivalent classifiers

e With this choice for Qy, the majority vote By, is the same
classifier as hy, since:

Bau(x) = sgn( E sgn(v-¢<x>>) — sgn(w-$(x)) = ().

v~ Ww

e Thus R(hw) = R(Bg, ) < 2R(Gg,): an upper bound on
R(Gg,) also provides an upper bound on R(hy).
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Linear classifiers
Specialization to Linear Classifiers Bayes-equivalent classifiers
Objective functions to minimize

Bayes-equivalent classifiers

e With this choice for Qy, the majority vote By, is the same
classifier as hy, since:

Bau(x) = sgn( E sgn(v-¢<x>>) — sgn(w-$(x)) = ().

v~ Ww

e Thus R(hw) = R(Bg, ) < 2R(Gg,): an upper bound on
R(Gg,) also provides an upper bound on R(hy).

@ The prior Py, is also an isotropic Gaussian centered on wy,.
Consequently:

1
KL(QullP,) = 5llw = w2,
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Linear classifiers
Specialization to Linear Classifiers Bayes-equivalent classifiers
Objective functions to minimize

Gibbs' risk

We need to compute Gibb's risk Ry ,)(Gg,) on (x,y) since:

def

R(x,y)(GQw) /R dVQW(V)I(yV ° ¢(X) < 0)

R( GQW ) = (X yEND R(x,y) ( GQW ) , GQW = Z (XI 7yl GQW °
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Linear classifiers
Specialization to Linear Classifiers Bayes-equivalent classifiers
Objective functions to minimize

Gibbs' risk

We need to compute Gibb's risk Ry ,)(Gg,) on (x,y) since:
def
Ren(Ga) [ dvQuW)ilyv-9(x) <0)
R(GQW) = EN R(X,_y)(GQw) ) GQW = Z (XI 7}/: GQW :

As in Langford (2005), the Gaussian integral gives:

R(X,y)(GQw) = <D(Hw||rw(x,y)> i where:

x def YW - ¢(X) . a d:ef ex ——X X
W) = Talmeeor - *@ =l p< >d'
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Linear classifiers
Specialization to Linear Classifiers Bayes-equivalent classifiers
Objective functions to minimize

Probit loss
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Linear classifiers
Specialization to Linear Classifiers Bayes-equivalent classifiers
Objective functions to minimize

Objective function from Corollary 2.1

From Corollary 2.1, we need to find w minimizing:

B(S,w,0) def sup{e : kI(Rs(Gg,)lle) <

[KL(QWHPWP) +1In 5(5’")] } F(2.1),

1
m

for a fixed § (say d = 0.05).
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Specialization to Linear Classifiers Bayes-equivalent classifiers
Objective functions to minimize

Objective function from Corollary 2.1

From Corollary 2.1, we need to find w minimizing:
B(S,w,0) & sup{e : kI(Rs(Gg,)lle) <

1 §(m)

p. [KL(QWHPWP) +1In 5] } F(2.1),
for a fixed d (say ¢ = 0.05). Hence we need to find w minimizing B
subject to:

k](Rs(GQw)

m 5

B > RS(GQW) .

8) =+ [KL(@ulIRy) + 10 €7

P. Germain, A. Lacasse, F. Laviolette, M. Marchand PAC-Bayesian Learning of Linear Classifiers 16/25



Linear classifiers
Specialization to Linear Classifiers Bayes-equivalent classifiers
Objective functions to minimize

Objective function from Corollary 2.2

From Corollary 2.2, for fixed C and wp, we need to find w
minimizing:

cmRs(GQw)+KL(QW||Pw ) =

C3o(HEEd) Sl (Foa),
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Linear classifiers
Specialization to Linear Classifiers Bayes-equivalent classifiers
Objective functions to minimize

Objective function from Corollary 2.2

From Corollary 2.2, for fixed C and wp, we need to find w
minimizing:

cmRs(GQw)+KL(QW||Pw ) =

C3o(HEEd) Sl (Foa),

We have the same regularizer as the SVM when w, = 0 (absence
of prior knowledge). Indeed, SVM minimizes:

m
> max(o, 1—yw- ¢(x,-)> + %HWH2 ;
i=1

(The probit loss is replaced by the convex hinge loss.)
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Gradient of the PAC-Bayes bound

. . Learning algorithms
PAC-Bayesian Gradient Descent SRR

Gradient of the PAC-Bayes bound

@ We performed the Polak-Ribiere conjugate gradient descent
(GSL implementation).
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Gradient of the PAC-Bayes bound

@ We performed the Polak-Ribiere conjugate gradient descent
(GSL implementation).

@ For this, we only need to compute the gradient V,B.

For F»1 and F,2, we find that V,, 3 is given, respectively, by:
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Gradient of the PAC-Bayes bound

. . Learning algorithms
PAC-Bayesian Gradient Descent SRR

Gradient of the PAC-Bayes bound

@ We performed the Polak-Ribiere conjugate gradient descent
(GSL implementation).

@ For this, we only need to compute the gradient V,B.

For F>.1 and F»2, we find that VB is given, respectively, by:

e (559)

Rs(1 - B)
[ YiW ¢(X) i (:) ore
Z"’( 166 >u¢( ,)H] (o )
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Gradient of the PAC-Bayes bound

. . Learning algorithms
PAC-Bayesian Gradient Descent SRR

Gradient of the PAC-Bayes bound

@ We performed the Polak-Ribiere conjugate gradient descent
(GSL implementation).

@ For this, we only need to compute the gradient V,B.

For F>.1 and F»2, we find that VB is given, respectively, by:

;B;l—_f?f)[w‘wp+ln<m>'

Z"" () Totet hr o

1 [ YiW - ¢(XI) ¢(X’) w—Ww or
c Z“’( 160 )uqs( ] R )
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Gradient of the PAC-Bayes bound

. . Learning algorithms
PAC-Bayesian Gradient Descent SRR

Why gradient descent?

@ Does there exists a more efficient learning algorithm?

P. Germain, A. Lacasse, F. Laviolette, M. Marchand PAC-Bayesian Learning of Linear Classifiers 19/25



Gradient of the PAC-Bayes bound

. . Learning algorithms
PAC-Bayesian Gradient Descent SRR

Why gradient descent?

@ Does there exists a more efficient learning algorithm?

@ The probit loss ®(a) is quasi-convex in a. (Nice!)

P. Germain, A. Lacasse, F. Laviolette, M. Marchand PAC-Bayesian Learning of Linear Classifiers 19/25



Gradient of the PAC-Bayes bound

. . Learning algorithms
PAC-Bayesian Gradient Descent SRR

Why gradient descent?

@ Does there exists a more efficient learning algorithm?
@ The probit loss ®(a) is quasi-convex in a. (Nice!)

@ The sum of two quasi-convex functions is (generally) not
quasi-convex.

P. Germain, A. Lacasse, F. Laviolette, M. Marchand PAC-Bayesian Learning of Linear Classifiers 19/25



Gradient of the PAC-Bayes bound

. . Learning algorithms
PAC-Bayesian Gradient Descent SRR

Why gradient descent?

Does there exists a more efficient learning algorithm?

The probit loss ®(a) is quasi-convex in a. (Nice!)
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Gradient of the PAC-Bayes bound

. . Learning algorithms
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Why gradient descent?

@ Does there exists a more efficient learning algorithm?

@ The probit loss ®(a) is quasi-convex in a. (Nice!)

@ The sum of two quasi-convex functions is (generally) not
quasi-convex.

@ Hence, Rs(Gg,) is (generally) not quasi-convex. (Not nice)

e B(S,w, ) does have several local minima on some data sets.
This is especially true for Fo 5 when C is large.

@ Each function minimization of F, > consisted of k different
gradient-descent runs. (We used k = 10 for C < 10, and
k =100 for C > 10.)
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Primal and Dual Versions

@ Each proposed algorithm has a primal ({ws,...,wy}) and a
dual ({aq,...,am}) version

w = Za;yi¢(xi) o k(x,x) = @(x) - (X)
i=1
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PAC-Bayesian Gradient Descent (et elmitdiris

Primal and Dual Versions

@ Each proposed algorithm has a primal ({ws,...,wy}) and a
dual ({aq,...,am}) version

w = aiyid(xi)  k(x,x) = ¢(x)$(x)
i=1
@ Decision stumps was used for the primal versions (and

compared with AdaBoost).

@ The RBF kernel was used for the dual versions (and compared
with the soft-margin SVM).

1
o (—2\\x—x’!!2/02> .
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e PBGDL1 uses Py (i.e., wp, = 0) to learn Qy by minimizing
F>1 (With 0= 05)
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e PBGD3 minimizes F,2 (with Pp) but uses 10-fold CV to
choose the value of C.

o PBGD2 uses half of the training data to “learn a good prior”.

e Minimize F5 (with Pg) on first half of training data for
C e {10X: k=0,...,6}. This gives {wp,...,ws}.

e Minimize Fp 1 with Py, ..., Pw, on the other half of examples
and keep the final classifier that minimizes Corollary 2.1.
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Gradient of the PAC-Bayes bound

PAC-Bayesian Gradient Descent (et elmitdiris

Three Learning Algorithms

e PBGDL1 uses Py (i.e., wp, = 0) to learn Qy by minimizing
Fq (With = 05)

e PBGD3 minimizes F,2 (with Pp) but uses 10-fold CV to
choose the value of C.

o PBGD2 uses half of the training data to “learn a good prior”.

e Minimize F5 (with Pg) on first half of training data for
C e {10X: k=0,...,6}. This gives {wp,...,ws}.
e Minimize Fp 1 with Py, ..., Pw, on the other half of examples
and keep the final classifier that minimizes Corollary 2.1.
e REMARK: PBGD1 and PBGD?2 are true
bound-minimization algorithms (but not PBGD3).
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Experimental Methodology

@ Extensive results on UCI and MNIST data sets.
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Results with a RBF kernel
Conclusion

Numerical Results

Experimental Methodology

o Extensive results on UCl and MNIST data sets.

@ About half of the data was used for training and half for
testing (except for MNIST and Letters where more than 65%
was used for testing).

@ The binomial tail inversion test set method (Langford, JMLR
2005) was used to determine statistical significance: see the
SSB column in the next tables.
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Results with decision stumps
Results with a RBF kernel
Conclusion

Numerical Results

Dataset |[(A)AdaBoost|| (1) PBGD1 || (2) PBGD2 || (3) PBGD3 SSB

Name Risk | Bound || Risk | Bound || Risk | Bound || Risk | Bound
Usvotes 0.055| 0.346 |({0.085| 0.207 ||0.060| 0.165 |{0.060| 0.261
Credit-A 0.170| 0.504 (|0.177| 0.375 |/0.187| 0.272 |{0.143| 0.420
Glass 0.178| 0.636 |[{0.196| 0.562 (|0.168| 0.395 |{0.150| 0.581
Haberman 0.260| 0.590 |/0.273| 0.422 |{0.267| 0.465 ||0.273| 0.424
Heart 0.259| 0.569 |{0.170| 0.461 (|0.190| 0.379 |{0.184| 0.473
Sonar 0.231| 0.644 |[{0.269| 0.579 (|0.173| 0.547 |{0.125| 0.622

BreastCancer|[0.053| 0.295 |{0.041| 0.129 ||0.047| 0.104 (|0.044| 0.190
Tic-tac-toe |[0.357| 0.483 [[0.294| 0.462 (|0.207| 0.302 (|0.207| 0.474 || 2,3<A,1
lonosphere 0.120| 0.602 |{0.120| 0.425 |/0.109| 0.347 |{0.103| 0.557
Wdbc 0.049| 0.447 |(0.042| 0.272 |/0.049| 0.147 ||0.035| 0.319
MNIST:0vs8 ||0.008| 0.528 |/0.015| 0.191 ||0.011| 0.062 |/0.006| 0.262
MNIST:1vs7 ||0.013| 0.541 |/0.020| 0.184 ||0.015| 0.050 |/0.016| 0.233
MNIST:1vs8 ||0.025| 0.552 |/0.037| 0.247 ||0.027| 0.087 |/0.018| 0.305 3<1
MNIST:2vs3 |[0.047| 0.558 |{0.046| 0.264 |/0.040| 0.105 (|0.034| 0.356
Letter:AvsB |{0.010| 0.254 |{0.009| 0.180 ||/0.007| 0.065 (|0.007| 0.180
Letter:DvsO |{0.036| 0.378 |{0.043| 0.314 |/0.033| 0.090 (|0.024| 0.360
Letter:OvsQ |{0.038| 0.431 |{0.061| 0.357 |/0.053| 0.106 (|0.042| 0.454
Adult 0.149| 0.394 |{0.168| 0.270 ||0.169| 0.209 (|0.159| 0.364 A<1,2

Mushroom 0.000| 0.200 ||0.046| 0.130 ||0.016| 0.030 (|0.002| 0.150 [|A,3<2<1
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Results with decision stumps
Results with a RBF kernel

Conclusion
Numerical Results

Dataset (S)SVM || (1) PBGD1 || (2) PBGD2 || (3) PBGD3 || SSB

Name Risk |Bound|| Risk | Bound || Risk | Bound || Risk | Bound
Usvotes 0.055| 0.370 |{0.080| 0.244 (|0.050| 0.153 |{0.075| 0.332
Credit-A 0.183| 0.591 |{0.150| 0.341 (|0.150| 0.248 |{0.160| 0.375
Glass 0.178| 0.571 ||0.168| 0.539 ||0.215| 0.430 ||/0.168| 0.541
Haberman 0.280| 0.423 {|0.280| 0.417 |{0.327| 0.444 ||0.253| 0.555
Heart 0.197| 0.513 ||0.190| 0.441 ||{0.184| 0.400 {/0.197| 0.520
Sonar 0.163] 0.599 ||0.250| 0.560 ||{0.173| 0.477 |/0.144| 0.585

BreastCancer||0.038| 0.146 [|0.044| 0.132 |{0.041| 0.101 ({0.047| 0.162
Tic-tac-toe 0.081| 0.555 |{0.365| 0.426 [|0.173| 0.287 |(0.077| 0.548 |[S,3<2<1
lonosphere 0.097| 0.531 |{0.114| 0.395 (|0.103| 0.376 |{0.091| 0.465
Wdbc 0.074| 0.400 |{0.074| 0.366 (|0.067| 0.298 |{0.074| 0.367
MNIST:0vs8 |/0.003| 0.257 |[{0.009| 0.202 {{0.007| 0.058 |[|0.004| 0.320
MNIST:1vs7 |/0.011| 0.216 |{0.014| 0.161 {{0.009| 0.052 (|0.010| 0.250
MNIST:1vs8 [|0.011| 0.306 ||0.014| 0.204 |{0.011| 0.060 (|0.010| 0.291
MNIST:2vs3 [|0.020| 0.348 ||0.038| 0.265 |{0.028| 0.096 |(|0.023| 0.326 S<1
Letter:AvsB |[|0.001| 0.491 [|0.005| 0.170 |{0.003| 0.064 |(|0.001| 0.485
Letter:DvsO |[[0.014| 0.395 [|0.017| 0.267 |{0.024| 0.086 |(|0.013| 0.350
Letter:OvsQ |[|0.015| 0.332 {|0.029| 0.299 |{0.019| 0.078 ||0.014| 0.329
Adult 0.159| 0.535 (|0.173| 0.274 ||0.180| 0.224 (|0.164| 0.372 S,3<2
Mushroom  {|0.000| 0.213 |{0.007| 0.119 {{0.001| 0.011 |{0.000| 0.167 || S,2,3<1
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Conclusion

e PBGD?2 is better than PBGD1 (for Rt and bound).
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e PBGD?2 is better than PBGD1 (for Rt and bound).
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right trade-off between Rs(Gg) and KL(Q||P).
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(perhaps) but it is much slower (several local minima).
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Conclusion

PBGD?2 is better than PBGD1 (for R+ and bound).
e Using half of the data to learn a prior helps.
PBGD3 is a bit better than PBGD2.

e The bound is a bit worse than CV for finding quantitatively the
right trade-off between Rs(Gg) and KL(Q||P).

e PBGD3 is a little bit better than AdaBoost and SVM
(perhaps) but it is much slower (several local minima).

e In practice, | would still use the SVM instead of PBGD3.

@ PBGD?2 is the best choice if obtaining a good guarantee on
the true risk is mandatory.

P. Germain, A. Lacasse, F. Laviolette, M. Marchand PAC-Bayesian Learning of Linear Classifiers 25/25



	Motivation
	In search of an optimization problem for learning
	PAC-Bayesian bound minimization
	Summary

	Simplified PAC-Bayes Theory
	Definitions
	The General PAC-Bayes Theorem
	The Langford-Seeger bound
	The Catoni bound

	Specialization to Linear Classifiers
	Linear classifiers
	Bayes-equivalent classifiers
	Objective functions to minimize

	PAC-Bayesian Gradient Descent
	Gradient of the PAC-Bayes bound
	Learning algorithms

	Numerical Results
	Results with decision stumps
	Results with a RBF kernel
	Conclusion


