PAC-Bayesian Learning of Linear Classifiers Laval University, Quebec city, Canada

P. Germain A. Lacasse F. Laviolette M. Marchand

June 17, 2009

P. Germain, A. Lacasse, F. Laviolette, M. Marchand

PAC-Bayesian Learning of Linear Classifiers

Simplified PAC-Bayes Theory Specialization to Linear Classifiers PAC-Bayesian Gradient Descent Numerical Results In search of an optimization problem for learning PAC-Bayesian bound minimization Summary

In search of an optimization problem for learning

• The goal of the **learner** is to try to find a **classifier** *h* with the smallest possible **risk** *R*(*h*)

$$R(h) \stackrel{\text{def}}{=} \Pr_{(\mathbf{x},y)\sim D} \left\{ h(\mathbf{x}) \neq y \right\} = \frac{\mathbf{E}}{(\mathbf{x},y)\sim D} I(h(\mathbf{x}) \neq y).$$

- However, we do not know the data-generating distribution D.
- We have only access to S = {(x₁, y₁)...(x_m, y_m)}: a training set of m examples, each generated according to D
- What should the learner optimize on *S* to obtain a classifier *h* having the smallest possible risk *R*(*h*)?

(日) (同) (ヨ) (ヨ)

In search of an optimization problem for learning PAC-Bayesian bound minimization Summary

In search of an optimization problem for learning

• The goal of the **learner** is to try to find a **classifier** *h* with the smallest possible **risk** *R*(*h*)

$$R(h) \stackrel{\text{def}}{=} \Pr_{(\mathbf{x},y)\sim D} \left\{ h(\mathbf{x}) \neq y \right\} = \frac{\mathbf{E}}{(\mathbf{x},y)\sim D} I(h(\mathbf{x}) \neq y).$$

- However, we do not know the data-generating distribution D.
- We have only access to S = {(x₁, y₁)...(x_m, y_m)}: a training set of m examples, each generated according to D
- What should the learner optimize on *S* to obtain a classifier *h* having the smallest possible risk *R*(*h*)?

(日) (同) (三) (三)

In search of an optimization problem for learning PAC-Bayesian bound minimization Summary

In search of an optimization problem for learning

• The goal of the **learner** is to try to find a **classifier** *h* with the smallest possible **risk** *R*(*h*)

$$R(h) \stackrel{\text{def}}{=} \Pr_{(\mathbf{x},y)\sim D} \left\{ h(\mathbf{x}) \neq y \right\} = \frac{\mathbf{E}}{(\mathbf{x},y)\sim D} I(h(\mathbf{x}) \neq y).$$

- However, we do not know the data-generating distribution D.
- We have only access to S = {(x₁, y₁)...(x_m, y_m)}: a training set of m examples, each generated according to D.
- What should the learner optimize on *S* to obtain a classifier *h* having the smallest possible risk *R*(*h*)?

・ロト ・同ト ・ヨト ・ヨト

In search of an optimization problem for learning PAC-Bayesian bound minimization Summary

In search of an optimization problem for learning

• The goal of the **learner** is to try to find a **classifier** *h* with the smallest possible **risk** *R*(*h*)

$$R(h) \stackrel{\text{def}}{=} \Pr_{(\mathbf{x},y)\sim D} \left\{ h(\mathbf{x}) \neq y \right\} = \frac{\mathbf{E}}{(\mathbf{x},y)\sim D} I(h(\mathbf{x}) \neq y).$$

- However, we do not know the data-generating distribution D.
- We have only access to S = {(x₁, y₁)...(x_m, y_m)}: a training set of m examples, each generated according to D.
- What should the learner optimize on *S* to obtain a classifier *h* having the smallest possible risk *R*(*h*)?

・ロト ・同ト ・ヨト ・ヨト

Simplified PAC-Bayes Theory Specialization to Linear Classifiers PAC-Bayesian Gradient Descent Numerical Results In search of an optimization problem for learning PAC-Bayesian bound minimization Summary

PAC-Bayesian bound minimization

- Several objective functions (to minimize on *S*) have been proposed.
 - The soft-margin SVM, AdaBoost, ridge regression...
- But the final rigorous (and accepted) guarantee is always a **risk bound** that holds uniformly over a space of classifiers.
- Let us try to design an efficient learning algorithm that minimizes the PAC-Bayes bound.

イロト イポト イラト イラト

Simplified PAC-Bayes Theory Specialization to Linear Classifiers PAC-Bayesian Gradient Descent Numerical Results In search of an optimization problem for learning PAC-Bayesian bound minimization Summary

PAC-Bayesian bound minimization

- Several objective functions (to minimize on *S*) have been proposed.
 - The soft-margin SVM, AdaBoost, ridge regression...
- But the final rigorous (and accepted) guarantee is always a **risk bound** that holds uniformly over a space of classifiers.
- Let us try to design an efficient learning algorithm that minimizes the PAC-Bayes bound.

Simplified PAC-Bayes Theory Specialization to Linear Classifiers PAC-Bayesian Gradient Descent Numerical Results In search of an optimization problem for learning PAC-Bayesian bound minimization Summary

PAC-Bayesian bound minimization

- Several objective functions (to minimize on S) have been proposed.
 - The soft-margin SVM, AdaBoost, ridge regression...
- But the final rigorous (and accepted) guarantee is always a **risk bound** that holds uniformly over a space of classifiers.
- Let us try to design an efficient learning algorithm that minimizes the PAC-Bayes bound.

Simplified PAC-Bayes Theory Specialization to Linear Classifiers PAC-Bayesian Gradient Descent Numerical Results

Summary

In search of an optimization problem for learning PAC-Bayesian bound minimization Summary

- A simple and general theorem from which all other known PAC-Bayes bound can be simply derived.
- Specialization to linear classifiers.
- Gradient descent of the PAC-Bayes bound: three different learning algorithms.
- Extensive numerical results and comparison with AdaBoost and the SVM.

<ロト < 同ト < 回ト < ヨト

Simplified PAC-Bayes Theory Specialization to Linear Classifiers PAC-Bayesian Gradient Descent Numerical Results In search of an optimization problem for learning PAC-Bayesian bound minimization Summary

Summary

- A simple and general theorem from which all other known PAC-Bayes bound can be simply derived.
- Specialization to linear classifiers.
- Gradient descent of the PAC-Bayes bound: three different learning algorithms.
- Extensive numerical results and comparison with AdaBoost and the SVM.

<ロト <同ト < ヨト < ヨト

Simplified PAC-Bayes Theory Specialization to Linear Classifiers PAC-Bayesian Gradient Descent Numerical Results In search of an optimization problem for learning PAC-Bayesian bound minimization Summary

Summary

- A simple and general theorem from which all other known PAC-Bayes bound can be simply derived.
- Specialization to linear classifiers.
- Gradient descent of the PAC-Bayes bound: three different learning algorithms.
- Extensive numerical results and comparison with AdaBoost and the SVM.

<ロト <同ト < ヨト < ヨト

Simplified PAC-Bayes Theory Specialization to Linear Classifiers PAC-Bayesian Gradient Descent Numerical Results In search of an optimization problem for learning PAC-Bayesian bound minimization Summary

Summary

- A simple and general theorem from which all other known PAC-Bayes bound can be simply derived.
- Specialization to linear classifiers.
- Gradient descent of the PAC-Bayes bound: three different learning algorithms.
- Extensive numerical results and comparison with AdaBoost and the SVM.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Definitions The General PAC-Bayes Theorem The Langford-Seeger bound The Catoni bound

Definitions

• The (true) risk R(h) and training error $R_S(h)$ are defined as:

$$R(h) \stackrel{\text{def}}{=} \mathop{\mathbf{E}}_{(\mathbf{x},y)\sim D} I(h(\mathbf{x}) \neq y) \quad ; \quad R_{\mathcal{S}}(h) \stackrel{\text{def}}{=} \frac{1}{m} \sum_{i=1}^{m} I(h(\mathbf{x}_i) \neq y_i) \, .$$

- The learner's goal is to choose a **posterior distribution** Q on a space \mathcal{H} of classifiers such that the risk of the Q-weighted **majority vote** B_Q is as small as possible.
- PAC-Bayes bounds the risk of the Gibbs classifier G_Q. To predict the label of x, G_Q draws h from H and predicts h(x).
- The risk and the training error of G_Q are thus defined as:

 $R(G_Q) = \mathop{\mathbf{E}}_{h\sim Q} R(h) \quad ; \quad R_S(G_Q) = \mathop{\mathbf{E}}_{h\sim Q} R_S(h)$

・ロト ・同ト ・ヨト ・ヨト

Definitions The General PAC-Bayes Theorem The Langford-Seeger bound The Catoni bound

Definitions

• The (true) risk R(h) and training error $R_S(h)$ are defined as:

$$R(h) \stackrel{\text{def}}{=} \mathop{\mathbf{E}}_{(\mathbf{x},y)\sim D} I(h(\mathbf{x}) \neq y) \quad ; \quad R_{\mathcal{S}}(h) \stackrel{\text{def}}{=} \frac{1}{m} \sum_{i=1}^{m} I(h(\mathbf{x}_i) \neq y_i) \, .$$

- The learner's goal is to choose a **posterior distribution** Q on a space \mathcal{H} of classifiers such that the risk of the Q-weighted **majority vote** B_Q is as small as possible.
- PAC-Bayes bounds the risk of the Gibbs classifier G_Q. To predict the label of x, G_Q draws h from H and predicts h(x).
- The risk and the training error of G_Q are thus defined as:

 $R(G_Q) = \mathop{\mathbf{E}}_{h\sim Q} R(h)$; $R_S(G_Q) = \mathop{\mathbf{E}}_{h\sim Q} R_S(h)$.

< ロ > < 同 > < 回 > < 回 > < □ > <

Definitions The General PAC-Bayes Theorem The Langford-Seeger bound The Catoni bound

Definitions

• The (true) risk R(h) and training error $R_S(h)$ are defined as:

$$R(h) \stackrel{\mathrm{def}}{=} \mathop{\mathbf{E}}_{(\mathbf{x},y)\sim D} I(h(\mathbf{x}) \neq y) \quad ; \quad R_{\mathcal{S}}(h) \stackrel{\mathrm{def}}{=} \frac{1}{m} \sum_{i=1}^{m} I(h(\mathbf{x}_i) \neq y_i) \, .$$

- The learner's goal is to choose a **posterior distribution** Q on a space \mathcal{H} of classifiers such that the risk of the Q-weighted **majority vote** B_Q is as small as possible.
- PAC-Bayes bounds the risk of the Gibbs classifier G_Q. To predict the label of x, G_Q draws h from H and predicts h(x).
- The risk and the training error of G_Q are thus defined as:

 $R(G_Q) = \mathop{\mathbf{E}}_{h\sim Q} R(h)$; $R_S(G_Q) = \mathop{\mathbf{E}}_{h\sim Q} R_S(h)$.

Definitions The General PAC-Bayes Theorem The Langford-Seeger bound The Catoni bound

Definitions

• The (true) risk R(h) and training error $R_S(h)$ are defined as:

$$R(h) \stackrel{\mathrm{def}}{=} \mathop{\mathbf{E}}_{(\mathbf{x},y)\sim D} I(h(\mathbf{x}) \neq y) \quad ; \quad R_{\mathcal{S}}(h) \stackrel{\mathrm{def}}{=} \frac{1}{m} \sum_{i=1}^{m} I(h(\mathbf{x}_i) \neq y_i) \, .$$

- The learner's goal is to choose a **posterior distribution** Q on a space \mathcal{H} of classifiers such that the risk of the Q-weighted **majority vote** B_Q is as small as possible.
- PAC-Bayes bounds the risk of the Gibbs classifier G_Q. To predict the label of x, G_Q draws h from H and predicts h(x).
- The risk and the training error of G_Q are thus defined as:

$$R(G_Q) = \mathop{\mathbf{E}}_{h\sim Q} R(h)$$
; $R_S(G_Q) = \mathop{\mathbf{E}}_{h\sim Q} R_S(h)$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Definitions The General PAC-Bayes Theorem The Langford-Seeger bound The Catoni bound

G_Q, B_Q , and $\mathrm{KL}(Q \| P)$

- If B_Q misclassifies x, then at least half of the classifiers (under measure Q) err on x. Then R(B_Q) ≤ 2R(G_Q): An upper bound on R(G_Q) also gives an upper bound on R(B_Q).
- PAC-Bayes makes use of a prior distribution P on H.
- The risk bound depends on the **Kullback-Leibler divergence** KL(*Q*||*P*):

$$\operatorname{KL}({\mathcal Q}\|P) \stackrel{\operatorname{def}}{=} {\operatorname{{f E}}}_{h\sim Q} \, \ln {{\mathcal Q}(h)\over P(h)} \, .$$

• We will also make use of the of the KL divergence between Bernoulli distributions of probability of success *p* and *q*:

$$\operatorname{kl}(q,p) \stackrel{\operatorname{def}}{=} q \ln rac{q}{p} + (1-q) \ln rac{1-q}{1-p}$$

< ロ > < 同 > < 回 > < 回 >

Definitions The General PAC-Bayes Theorem The Langford-Seeger bound The Catoni bound

G_Q, B_Q , and $\mathrm{KL}(Q \| P)$

- If B_Q misclassifies x, then at least half of the classifiers (under measure Q) err on x. Then R(B_Q) ≤ 2R(G_Q): An upper bound on R(G_Q) also gives an upper bound on R(B_Q).
- PAC-Bayes makes use of a **prior distribution** P on \mathcal{H} .
- The risk bound depends on the **Kullback-Leibler divergence** KL(*Q*||*P*):

$$\operatorname{KL}({\mathcal Q}\|P) \stackrel{\operatorname{def}}{=} {\operatorname{{f E}}}_{h\sim Q} \, \ln {{\mathcal Q}(h)\over P(h)} \, .$$

• We will also make use of the of the KL divergence between Bernoulli distributions of probability of success *p* and *q*:

$$\operatorname{kl}(q,p) \stackrel{ ext{def}}{=} q \ln rac{q}{p} + (1-q) \ln rac{1-q}{1-p}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Definitions The General PAC-Bayes Theorem The Langford-Seeger bound The Catoni bound

G_Q, B_Q , and $\mathrm{KL}(Q \| P)$

- If B_Q misclassifies x, then at least half of the classifiers (under measure Q) err on x. Then R(B_Q) ≤ 2R(G_Q): An upper bound on R(G_Q) also gives an upper bound on R(B_Q).
- PAC-Bayes makes use of a **prior distribution** P on \mathcal{H} .
- The risk bound depends on the Kullback-Leibler divergence KL(Q||P):

$$\operatorname{KL}(Q||P) \stackrel{\text{def}}{=} \operatorname{\mathbf{E}}_{h \sim Q} \ln \frac{Q(h)}{P(h)}$$

• We will also make use of the of the KL divergence between Bernoulli distributions of probability of success *p* and *q*:

$$\operatorname{kl}(q,p) \stackrel{\operatorname{def}}{=} q \ln rac{q}{p} + (1-q) \ln rac{1-q}{1-p}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Definitions The General PAC-Bayes Theorem The Langford-Seeger bound The Catoni bound

G_Q, B_Q , and $\mathrm{KL}(Q \| P)$

- If B_Q misclassifies x, then at least half of the classifiers (under measure Q) err on x. Then R(B_Q) ≤ 2R(G_Q): An upper bound on R(G_Q) also gives an upper bound on R(B_Q).
- PAC-Bayes makes use of a **prior distribution** P on \mathcal{H} .
- The risk bound depends on the Kullback-Leibler divergence KL(Q||P):

$$\operatorname{KL}(Q||P) \stackrel{\operatorname{def}}{=} \operatorname{\mathbf{E}}_{h\sim Q} \ln \frac{Q(h)}{P(h)}$$

• We will also make use of the of the KL divergence between Bernoulli distributions of probability of success *p* and *q*:

$$\operatorname{kl}(q,p) \stackrel{\operatorname{def}}{=} q \ln rac{q}{p} + (1-q) \ln rac{1-q}{1-p}$$

Definitions The General PAC-Bayes Theorem The Langford-Seeger bound The Catoni bound

The General PAC-Bayes Theorem

Theorem 1

For any distribution D, for any set \mathcal{H} of classifiers, for any prior distribution P of support \mathcal{H} , for any $\delta \in (0, 1]$, and for any convex function $\mathcal{D} : [0, 1] \times [0, 1] \to \mathbb{R}$, we have

$$\Pr_{S \sim D^m} \left(\forall Q \text{ on } \mathcal{H} \colon \mathcal{D}(R_S(G_Q), R(G_Q)) \leq \frac{1}{m} \left[\operatorname{KL}(Q \| P) + \ln \left(\frac{1}{\delta} \sum_{S \sim D^m} \sum_{h \sim P} e^{m \mathcal{D}(R_S(h), R(h))} \right) \right] \right) \geq 1 - \delta.$$

<ロト <同ト < ヨト < ヨト

Definitions The General PAC-Bayes Theorem **The Langford-Seeger bound** The Catoni bound

The Langford (2005) and Seeger (2002) bound

We recover a slightly tighter version if $\mathcal{D}(q,p) = \mathrm{kl}(q,p)$ and

$$\sum_{S \sim D^m} \sum_{h \sim P} e^{m \operatorname{kl}(R_S(h), R(h))} = \sum_{k=0}^m {m \choose k} (k/m)^k (1 - k/m)^{m-k}$$

$$\stackrel{\text{def}}{=} \xi(m) \in \Theta(\sqrt{m}).$$

Corollary 2.1

For any D, any \mathcal{H} , any P of support \mathcal{H} , any $\delta \in (0, 1]$, we have

$$\Pr_{S \sim D^m} \left(\forall Q \text{ on } \mathcal{H}: \ \mathrm{kl}(R_S(G_Q), R(G_Q)) \leq \frac{1}{m} \left[\mathrm{KL}(Q \| P) + \ln \frac{\xi(m)}{\delta} \right] \right) \geq 1 - \delta$$

イロト イポト イヨト イヨト

Đ.

Definitions The General PAC-Bayes Theorem **The Langford-Seeger bound** The Catoni bound

The Langford (2005) and Seeger (2002) bound

We recover a slightly tighter version if $\mathcal{D}(q,p) = \mathrm{kl}(q,p)$ and

$$\sum_{S \sim D^m} \sum_{h \sim P} e^{m \operatorname{kl}(R_S(h), R(h))} = \sum_{k=0}^m {m \choose k} (k/m)^k (1-k/m)^{m-k}$$

$$\stackrel{\text{def}}{=} \xi(m) \in \Theta(\sqrt{m}).$$

Corollary 2.1

For any D, any \mathcal{H} , any P of support \mathcal{H} , any $\delta \in (0, 1]$, we have

$$\Pr_{S \sim D^m} \left(\forall Q \text{ on } \mathcal{H}: \ \operatorname{kl}(R_S(G_Q), R(G_Q)) \leq \frac{1}{m} \left[\operatorname{KL}(Q \| P) + \ln \frac{\xi(m)}{\delta} \right] \right) \geq 1 - \delta \,,$$

(日) (同) (三) (三)

Definitions The General PAC-Bayes Theorem **The Langford-Seeger bound** The Catoni bound

Graphical illustration of the Langford-Seeger bound

Definitions The General PAC-Bayes Theorem The Langford-Seeger bound The Catoni bound

A bound also found by Catoni (2007)

Let $\mathcal{D}(q,p) = \mathcal{F}(p) - C \cdot q$. Then

$$\sum_{S \sim D^m} \mathop{\mathbf{E}}_{h \sim P} e^{m \mathcal{D}(R_S(h), R(h))} = \mathop{\mathbf{E}}_{h \sim P} e^{m \mathcal{F}(R(h))} \left(R(h) e^{-C} + (1 - R(h)) \right)^m$$

Corollary 2.2

For any D, any \mathcal{H} , any P of support \mathcal{H} , any $\delta \in (0, 1]$, and any positive real number C, we have

$$\Pr_{S \sim D^m} \begin{pmatrix} \forall Q \text{ on } \mathcal{H} :\\ R(G_Q) \leq \frac{1}{1 - e^{-C}} \left\{ 1 - \exp\left[-\left(C \cdot R_S(G_Q) \right) + \frac{1}{m} \left[\operatorname{KL}(Q \| P) + \ln \frac{1}{\delta} \right] \right) \right\} \geq 1 - \delta.$$

<ロト <同ト < ヨト < ヨト

Definitions The General PAC-Bayes Theorem The Langford-Seeger bound The Catoni bound

A bound also found by Catoni (2007)

Let $\mathcal{D}(q,p) = \mathcal{F}(p) - C \cdot q$. Then

$$\mathop{\mathbf{E}}_{S\sim D^m} \mathop{\mathbf{E}}_{h\sim P} e^{m\mathcal{D}(R_S(h),R(h))} = \mathop{\mathbf{E}}_{h\sim P} e^{m\mathcal{F}(R(h))} \left(R(h)e^{-C} + (1-R(h))\right)^m$$

Corollary 2.2

For any D, any \mathcal{H} , any P of support \mathcal{H} , any $\delta \in (0, 1]$, and any positive real number C, we have

$$\Pr_{\mathcal{S} \sim \mathcal{D}^m} \begin{pmatrix} \forall Q \text{ on } \mathcal{H} :\\ \mathcal{R}(\mathcal{G}_Q) \leq \frac{1}{1 - e^{-C}} \left\{ 1 - \exp\left[-\left(C \cdot \mathcal{R}_{\mathcal{S}}(\mathcal{G}_Q) \right) + \frac{1}{m} \left[\operatorname{KL}(Q \| P) + \ln \frac{1}{\delta} \right] \right) \right\} \end{pmatrix} \geq 1 - \delta.$$

<ロト <同ト < ヨト < ヨト

э

Definitions The General PAC-Bayes Theorem The Langford-Seeger bound The Catoni bound

Observations about Corollary 2.2

 G_Q is minimizing the bound of Corollary 2.2 iff it minimizes the following cost function (linear in R_S(G_Q)):

$C m R_S(G_Q) + \mathrm{KL}(Q \| P)$

- However, we have **hyperparameter** *C* to tune (in contrast with the bound of Corollary 2.1).
- Corollary 2.1 gives a bound which is always tighter except for a narrow range of *C* values.
- In fact, if we would replace ξ(m) by one, Corollary 2.1 would always give a tighter bound.

Definitions The General PAC-Bayes Theorem The Langford-Seeger bound The Catoni bound

Observations about Corollary 2.2

 G_Q is minimizing the bound of Corollary 2.2 iff it minimizes the following cost function (linear in R_S(G_Q)):

 $C m R_S(G_Q) + KL(Q || P)$

- However, we have **hyperparameter** *C* to tune (in contrast with the bound of Corollary 2.1).
- Corollary 2.1 gives a bound which is always tighter except for a narrow range of *C* values.
- In fact, if we would replace ξ(m) by one, Corollary 2.1 would always give a tighter bound.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definitions The General PAC-Bayes Theorem The Langford-Seeger bound The Catoni bound

Observations about Corollary 2.2

 G_Q is minimizing the bound of Corollary 2.2 iff it minimizes the following cost function (linear in R_S(G_Q)):

 $C m R_S(G_Q) + KL(Q || P)$

- However, we have **hyperparameter** *C* to tune (in contrast with the bound of Corollary 2.1).
- Corollary 2.1 gives a bound which is always tighter except for a narrow range of *C* values.
- In fact, if we would replace ξ(m) by one, Corollary 2.1 would always give a tighter bound.

Linear classifiers Bayes-equivalent classifiers Objective functions to minimize

Linear classifiers

• Each x is mapped to a high-dimensional feature vector $\phi(x)$:

$$\boldsymbol{\phi}(\mathbf{x}) \stackrel{\text{def}}{=} \left(\phi_1(\mathbf{x}), \ldots, \phi_N(\mathbf{x})\right).$$

 $ullet oldsymbol{\phi}$ is often implicitly given by a Mercer kernel

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x}) \cdot \phi(\mathbf{x}').$$

 The output h_v(x) of linear classifier h_v with weight vector v is given by

$$h_{\mathbf{v}}(\mathbf{x}) = \operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}))$$
.

• Each posterior $Q_{\mathbf{w}}$ is an isotropic Gaussian centered on \mathbf{w} :

$$Q_{\mathbf{w}}(\mathbf{v}) = \left(\frac{1}{\sqrt{2\pi}}\right)^{N} \exp\left(-\frac{1}{2}\|\mathbf{v}-\mathbf{w}\|^{2}\right)$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Linear classifiers Bayes-equivalent classifiers Objective functions to minimize

Linear classifiers

• Each x is mapped to a high-dimensional feature vector $\phi(x)$:

$$\boldsymbol{\phi}(\mathbf{x}) \stackrel{\text{def}}{=} \left(\phi_1(\mathbf{x}), \dots, \phi_N(\mathbf{x}) \right).$$

 $oldsymbol{\phi}$ is often implicitly given by a Mercer kernel

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x}) \cdot \phi(\mathbf{x}')$$
.

 The output h_v(x) of linear classifier h_v with weight vector v is given by

$$h_{\mathbf{v}}(\mathbf{x}) = \operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x})).$$

• Each posterior $Q_{\mathbf{w}}$ is an isotropic Gaussian centered on \mathbf{w} :

$$Q_{\mathbf{w}}(\mathbf{v}) = \left(\frac{1}{\sqrt{2\pi}}\right)^N \exp\left(-\frac{1}{2}\|\mathbf{v}-\mathbf{w}\|^2\right)$$

・ロト ・同ト ・ヨト ・ヨト

Linear classifiers Bayes-equivalent classifiers Objective functions to minimize

Linear classifiers

• Each x is mapped to a high-dimensional feature vector $\phi(x)$:

$$\boldsymbol{\phi}(\mathbf{x}) \stackrel{\text{def}}{=} \left(\phi_1(\mathbf{x}), \dots, \phi_N(\mathbf{x}) \right).$$

 $ullet oldsymbol{\phi}$ is often implicitly given by a Mercer kernel

$$k(\mathbf{x},\mathbf{x}') = \phi(\mathbf{x}) \cdot \phi(\mathbf{x}')$$
.

 The output h_v(x) of linear classifier h_v with weight vector v is given by

$$h_{\mathbf{v}}(\mathbf{x}) = \operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}))$$
.

• Each posterior $Q_{\mathbf{w}}$ is an isotropic Gaussian centered on \mathbf{w} :

$$Q_{\mathbf{w}}(\mathbf{v}) = \left(\frac{1}{\sqrt{2\pi}}\right)^N \exp\left(-\frac{1}{2}\|\mathbf{v}-\mathbf{w}\|^2\right)$$

・ロト ・同ト ・ヨト ・ヨト

Linear classifiers Bayes-equivalent classifiers Objective functions to minimize

Linear classifiers

• Each x is mapped to a high-dimensional feature vector $\phi(x)$:

$$\boldsymbol{\phi}(\mathbf{x}) \stackrel{\text{def}}{=} \left(\phi_1(\mathbf{x}), \dots, \phi_N(\mathbf{x}) \right).$$

 $ullet oldsymbol{\phi}$ is often implicitly given by a Mercer kernel

$$k(\mathbf{x},\mathbf{x}') = \phi(\mathbf{x}) \cdot \phi(\mathbf{x}')$$
.

 The output h_v(x) of linear classifier h_v with weight vector v is given by

$$h_{\mathbf{v}}(\mathbf{x}) = \operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}))$$
.

• Each posterior $Q_{\mathbf{w}}$ is an isotropic Gaussian centered on \mathbf{w} :

$$Q_{\mathbf{w}}(\mathbf{v}) = \left(rac{1}{\sqrt{2\pi}}
ight)^N \exp\left(-rac{1}{2}\|\mathbf{v}-\mathbf{w}\|^2
ight).$$

Linear classifiers Bayes-equivalent classifiers Objective functions to minimize

Bayes-equivalent classifiers

• With this choice for $Q_{\mathbf{w}}$, the majority vote $B_{Q_{\mathbf{w}}}$ is the same classifier as $h_{\mathbf{w}}$ since:

$$B_{Q_{\mathbf{w}}}(\mathbf{x}) = \operatorname{sgn}\left(\underset{\mathbf{v}\sim Q_{\mathbf{w}}}{\mathsf{E}}\operatorname{sgn}\left(\mathbf{v}\cdot\boldsymbol{\phi}(\mathbf{x})\right)\right) = \operatorname{sgn}\left(\mathbf{w}\cdot\boldsymbol{\phi}(\mathbf{x})\right) = h_{\mathbf{w}}(\mathbf{x}).$$

- Thus $R(h_w) = R(B_{Q_w}) \le 2R(G_{Q_w})$: an upper bound on $R(G_{Q_w})$ also provides an upper bound on $R(h_w)$.
- The prior P_{wp} is also an isotropic Gaussian centered on w_p. Consequently:

$$\mathrm{KL}(Q_{\mathsf{w}} \| P_{\mathsf{w}_{p}}) = \frac{1}{2} \| \mathsf{w} - \mathsf{w}_{p} \|^{2}.$$

・ロト ・得ト ・ヨト ・ヨト

Linear classifiers Bayes-equivalent classifiers Objective functions to minimize

Bayes-equivalent classifiers

• With this choice for $Q_{\mathbf{w}}$, the majority vote $B_{Q_{\mathbf{w}}}$ is the same classifier as $h_{\mathbf{w}}$ since:

$$B_{Q_{\mathbf{w}}}(\mathbf{x}) = \operatorname{sgn}\left(\underbrace{\mathbf{E}}_{\mathbf{v} \sim Q_{\mathbf{w}}} \operatorname{sgn}\left(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x})\right) \right) = \operatorname{sgn}\left(\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})\right) = h_{\mathbf{w}}(\mathbf{x}).$$

- Thus $R(h_{\mathbf{w}}) = R(B_{Q_{\mathbf{w}}}) \le 2R(G_{Q_{\mathbf{w}}})$: an upper bound on $R(G_{Q_{\mathbf{w}}})$ also provides an upper bound on $R(h_{\mathbf{w}})$.
- The prior P_{wp} is also an isotropic Gaussian centered on w_p. Consequently:

$$\mathrm{KL}(Q_{\mathbf{w}} \| P_{\mathbf{w}_{p}}) = \frac{1}{2} \| \mathbf{w} - \mathbf{w}_{p} \|^{2}.$$

・ロト ・得ト ・ヨト ・ヨト

Linear classifiers Bayes-equivalent classifiers Objective functions to minimize

Bayes-equivalent classifiers

• With this choice for $Q_{\mathbf{w}}$, the majority vote $B_{Q_{\mathbf{w}}}$ is the same classifier as $h_{\mathbf{w}}$ since:

$$B_{Q_{\mathbf{w}}}(\mathbf{x}) = \operatorname{sgn}\left(\underbrace{\mathbf{E}}_{\mathbf{v} \sim Q_{\mathbf{w}}} \operatorname{sgn}\left(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x})\right) \right) = \operatorname{sgn}\left(\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})\right) = h_{\mathbf{w}}(\mathbf{x}).$$

- Thus $R(h_w) = R(B_{Q_w}) \le 2R(G_{Q_w})$: an upper bound on $R(G_{Q_w})$ also provides an upper bound on $R(h_w)$.
- The prior $P_{\mathbf{w}_p}$ is also an isotropic Gaussian centered on \mathbf{w}_p . Consequently:

$$\mathrm{KL}(\mathcal{Q}_{\mathbf{w}} \| \mathcal{P}_{\mathbf{w}_{\rho}}) = \frac{1}{2} \| \mathbf{w} - \mathbf{w}_{\rho} \|^{2}.$$
Bayes-equivalent classifiers Objective functions to minimize

Gibbs' risk

We need to compute Gibb's risk $R_{(\mathbf{x},y)}(G_{Q_{\mathbf{w}}})$ on (\mathbf{x}, y) since:

$$\begin{aligned} R_{(\mathbf{x},y)}(G_{Q_{\mathbf{w}}}) &\stackrel{\text{def}}{=} \int_{\mathbb{R}^N} d\mathbf{v} Q_{\mathbf{w}}(\mathbf{v}) I(y\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}) < 0) \\ R(G_{Q_{\mathbf{w}}}) &= \frac{\mathbf{E}}{(\mathbf{x},y)\sim D} R_{(\mathbf{x},y)}(G_{Q_{\mathbf{w}}}) \quad ; \quad R_{\mathcal{S}}(G_{Q_{\mathbf{w}}}) = \frac{1}{m} \sum_{i=1}^m R_{(\mathbf{x}_i,y_i)}(G_{Q_{\mathbf{w}}}). \end{aligned}$$

$$R_{(\mathbf{x},y)}(G_{Q_{\mathbf{w}}}) = \Phi\left(\|\mathbf{w}\| \Gamma_{\mathbf{w}}(\mathbf{x},y)\right) ; \text{ where:}$$

$$\Gamma_{\mathbf{w}}(\mathbf{x},y) \stackrel{\text{def}}{=} \frac{y\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})}{\|\mathbf{w}\| \|\boldsymbol{\phi}(\mathbf{x})\|} ; \Phi(a) \stackrel{\text{def}}{=} \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} \exp\left(-\frac{1}{2}x^{2}\right) dx.$$

э

Linear classifiers Bayes-equivalent classifiers Objective functions to minimize

Gibbs' risk

We need to compute Gibb's risk $R_{(\mathbf{x},y)}(G_{Q_{\mathbf{w}}})$ on (\mathbf{x}, y) since:

$$\begin{aligned} R_{(\mathbf{x},y)}(G_{Q_{\mathbf{w}}}) &\stackrel{\text{def}}{=} \int_{\mathbb{R}^{N}} d\mathbf{v} Q_{\mathbf{w}}(\mathbf{v}) I(y\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}) < 0) \\ R(G_{Q_{\mathbf{w}}}) &= \frac{\mathbf{E}}{(\mathbf{x},y)\sim D} R_{(\mathbf{x},y)}(G_{Q_{\mathbf{w}}}) \quad ; \quad R_{\mathcal{S}}(G_{Q_{\mathbf{w}}}) = \frac{1}{m} \sum_{i=1}^{m} R_{(\mathbf{x}_{i},y_{i})}(G_{Q_{\mathbf{w}}}). \end{aligned}$$

As in Langford (2005), the Gaussian integral gives:

$$\begin{aligned} R_{(\mathbf{x},y)}(G_{Q_{\mathbf{w}}}) &= \Phi\left(\|\mathbf{w}\| \, \mathsf{\Gamma}_{\mathbf{w}}(\mathbf{x},y)\right) \quad ; \quad \text{where:} \\ \Gamma_{\mathbf{w}}(\mathbf{x},y) \stackrel{\text{def}}{=} \frac{y\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})}{\|\mathbf{w}\| \, \|\boldsymbol{\phi}(\mathbf{x})\|} \quad ; \quad \Phi(a) \stackrel{\text{def}}{=} \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} \exp\left(-\frac{1}{2}x^{2}\right) \, dx \, . \end{aligned}$$

< 日 > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 二 > < 二 > > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

э

Linear classifiers Bayes-equivalent classifiers Objective functions to minimize

Probit loss

P. Germain, A. Lacasse, F. Laviolette, M. Marchand

PAC-Bayesian Learning of Linear Classifiers 15/25

æ

Linear classifiers Bayes-equivalent classifiers Objective functions to minimize

Objective function from Corollary 2.1

From Corollary 2.1, we need to find \mathbf{w} minimizing:

$$\mathcal{B}(S, \mathbf{w}, \delta) \stackrel{\text{def}}{=} \sup \left\{ \epsilon : \operatorname{kl}(R_{S}(G_{Q_{\mathbf{w}}}) \| \epsilon) \leq \frac{1}{m} \left[\operatorname{KL}(Q_{\mathbf{w}} \| P_{\mathbf{w}_{p}}) + \ln \frac{\xi(m)}{\delta} \right] \right\} \quad F(2.1),$$

for a fixed δ (say δ = 0.05). Hence we need to find w minimizing ${\cal B}$ subject to:

$$\operatorname{kl}\left(R_{S}(G_{Q_{w}}) \| \mathcal{B}\right) = \frac{1}{m} \left[\operatorname{KL}(Q_{w} \| P_{w_{p}}) + \ln \frac{\xi(m)}{\delta}\right]$$
$$\mathcal{B} > R_{S}(G_{Q_{w}}).$$

< ロ > < 同 > < 回 > < 回 >

Linear classifiers Bayes-equivalent classifiers Objective functions to minimize

Objective function from Corollary 2.1

From Corollary 2.1, we need to find **w** minimizing:

$$\mathcal{B}(S, \mathbf{w}, \delta) \stackrel{\text{def}}{=} \sup \left\{ \epsilon : \operatorname{kl}(R_{S}(G_{Q_{\mathbf{w}}}) \| \epsilon) \leq \frac{1}{m} \left[\operatorname{KL}(Q_{\mathbf{w}} \| P_{\mathbf{w}_{p}}) + \ln \frac{\xi(m)}{\delta} \right] \right\} \quad F(2.1),$$

for a fixed δ (say $\delta=0.05).$ Hence we need to find ${\bf w}$ minimizing ${\cal B}$ subject to:

$$\operatorname{kl}\left(R_{\mathcal{S}}(\mathcal{G}_{\mathcal{Q}_{\mathbf{w}}}) \| \mathcal{B}\right) = \frac{1}{m} \left[\operatorname{KL}(\mathcal{Q}_{\mathbf{w}} \| \mathcal{P}_{\mathbf{w}_{p}}) + \ln \frac{\xi(m)}{\delta} \right]$$
$$\mathcal{B} > R_{\mathcal{S}}(\mathcal{G}_{\mathcal{Q}_{\mathbf{w}}}).$$

Linear classifiers Bayes-equivalent classifiers Objective functions to minimize

Objective function from Corollary 2.2

From Corollary 2.2, for fixed C and \mathbf{w}_p , we need to find \mathbf{w} minimizing:

$$CmR_{\mathcal{S}}(G_{Q_{\mathbf{w}}}) + \mathrm{KL}(Q_{\mathbf{w}} \| P_{\mathbf{w}_{\rho}}) = C\sum_{i=1}^{m} \Phi\left(\frac{y_{i}\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|}\right) + \frac{1}{2}\|\mathbf{w} - \mathbf{w}_{\rho}\|^{2} \quad (F_{2.2}),$$

We have the same regularizer as the SVM when $\mathbf{w}_p = \mathbf{0}$ (absence of prior knowledge). Indeed, SVM minimizes:

$$C\sum_{i=1}^{m} \max\left(0, 1-y_i \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)\right) + \frac{1}{2} \|\mathbf{w}\|^2,$$

(The probit loss is replaced by the convex hinge loss.)

P. Germain, A. Lacasse, F. Laviolette, M. Marchand

PAC-Bayesian Learning of Linear Classifiers

Linear classifiers Bayes-equivalent classifiers Objective functions to minimize

Objective function from Corollary 2.2

From Corollary 2.2, for fixed C and \mathbf{w}_p , we need to find \mathbf{w} minimizing:

$$CmR_{S}(G_{Q_{\mathbf{w}}}) + \mathrm{KL}(Q_{\mathbf{w}} \| P_{\mathbf{w}_{p}}) = C\sum_{i=1}^{m} \Phi\left(\frac{y_{i}\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|}\right) + \frac{1}{2}\|\mathbf{w} - \mathbf{w}_{p}\|^{2} \quad (F_{2.2}),$$

We have the same regularizer as the SVM when $\mathbf{w}_p = \mathbf{0}$ (absence of prior knowledge). Indeed, SVM minimizes:

$$C\sum_{i=1}^{m} \max\left(0, 1-y_i \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)\right) + \frac{1}{2} \|\mathbf{w}\|^2,$$

(The probit loss is replaced by the convex hinge loss.)

P. Germain, A. Lacasse, F. Laviolette, M. Marchand

Gradient of the PAC-Bayes bound Learning algorithms

Gradient of the PAC-Bayes bound

- We performed the Polak-Ribière conjugate gradient descent (GSL implementation).
- For this, we only need to compute the gradient $\nabla_w \mathcal{B}$.

For $F_{2,1}$ and $F_{2,2}$, we find that $\nabla_{\mathbf{w}} \mathcal{B}$ is given, respectively, by:

$$\frac{1}{m} \frac{\mathcal{B}(1-\mathcal{B})}{\mathcal{B}-R_{S}} \left[\mathbf{w} - \mathbf{w}_{p} + \ln\left(\frac{\mathcal{B}(1-R_{S})}{R_{S}(1-\mathcal{B})}\right) \cdot \sum_{i=1}^{m} \Phi'\left(\frac{y_{i}\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|}\right) \frac{y_{i}\boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|} \right] \text{ (for } F_{2.1})$$

$$C\sum_{i=1}^{m} \Phi'\left(\frac{y_i \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)}{\|\boldsymbol{\phi}(\mathbf{x}_i)\|}\right) \frac{y_i \boldsymbol{\phi}(\mathbf{x}_i)}{\|\boldsymbol{\phi}(\mathbf{x}_i)\|} + (\mathbf{w} - \mathbf{w}_p) \text{ (for } F_{2.2}).$$

<ロト < 同ト < 回ト < ヨト

Gradient of the PAC-Bayes bound Learning algorithms

Gradient of the PAC-Bayes bound

- We performed the Polak-Ribière conjugate gradient descent (GSL implementation).
- For this, we only need to compute the gradient $\nabla_{\mathbf{w}} \mathcal{B}$.

For $F_{2,1}$ and $F_{2,2}$, we find that $\nabla_{\mathbf{w}} \mathcal{B}$ is given, respectively, by:

$$\frac{1}{m} \frac{\mathcal{B}(1-\mathcal{B})}{\mathcal{B}-R_{S}} \left[\mathbf{w} - \mathbf{w}_{p} + \ln\left(\frac{\mathcal{B}(1-R_{S})}{R_{S}(1-\mathcal{B})}\right) \cdot \sum_{i=1}^{m} \Phi'\left(\frac{y_{i}\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|}\right) \frac{y_{i}\boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|} \right] \text{ (for } F_{2.1})$$

$$= C \sum_{i=1}^{m} \Phi' \left(\frac{y_i \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)}{\|\boldsymbol{\phi}(\mathbf{x}_i)\|} \right) \frac{y_i \boldsymbol{\phi}(\mathbf{x}_i)}{\|\boldsymbol{\phi}(\mathbf{x}_i)\|} + (\mathbf{w} - \mathbf{w}_p) \text{ (for } F_{2,2}).$$

Gradient of the PAC-Bayes bound Learning algorithms

Gradient of the PAC-Bayes bound

- We performed the Polak-Ribière conjugate gradient descent (GSL implementation).
- For this, we only need to compute the gradient $\nabla_{\mathbf{w}} \mathcal{B}$.

For $F_{2,1}$ and $F_{2,2}$, we find that $\nabla_{\mathbf{w}} \mathcal{B}$ is given, respectively, by:

$$\frac{1}{m} \frac{\mathcal{B}(1-\mathcal{B})}{\mathcal{B}-R_{S}} \left[\mathbf{w} - \mathbf{w}_{p} + \ln\left(\frac{\mathcal{B}(1-R_{S})}{R_{S}(1-\mathcal{B})}\right) \cdot \sum_{i=1}^{m} \Phi'\left(\frac{y_{i}\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|}\right) \frac{y_{i}\boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|} \right] \text{ (for } F_{2.1})$$

$$C\sum_{i=1}^{m} \Phi'\left(\frac{y_i \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)}{\|\boldsymbol{\phi}(\mathbf{x}_i)\|}\right) \frac{y_i \boldsymbol{\phi}(\mathbf{x}_i)}{\|\boldsymbol{\phi}(\mathbf{x}_i)\|} + (\mathbf{w} - \mathbf{w}_p) \text{ (for } F_{2,2}).$$

Gradient of the PAC-Bayes bound Learning algorithms

Gradient of the PAC-Bayes bound

- We performed the Polak-Ribière conjugate gradient descent (GSL implementation).
- For this, we only need to compute the gradient $\nabla_{\mathbf{w}} \mathcal{B}$.

For $F_{2,1}$ and $F_{2,2}$, we find that $\nabla_{\mathbf{w}} \mathcal{B}$ is given, respectively, by:

$$\frac{1}{m} \frac{\mathcal{B}(1-\mathcal{B})}{\mathcal{B}-R_{S}} \left[\mathbf{w} - \mathbf{w}_{p} + \ln\left(\frac{\mathcal{B}(1-R_{S})}{R_{S}(1-\mathcal{B})}\right) \cdot \sum_{i=1}^{m} \Phi'\left(\frac{y_{i}\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|}\right) \frac{y_{i}\boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|} \right] \text{ (for } F_{2.1})$$

Gradient of the PAC-Bayes bound Learning algorithms

Gradient of the PAC-Bayes bound

- We performed the Polak-Ribière conjugate gradient descent (GSL implementation).
- For this, we only need to compute the gradient $\nabla_{\mathbf{w}} \mathcal{B}$.

For $F_{2,1}$ and $F_{2,2}$, we find that $\nabla_{\mathbf{w}} \mathcal{B}$ is given, respectively, by:

$$\frac{1}{m} \frac{\mathcal{B}(1-\mathcal{B})}{\mathcal{B}-R_{S}} \left[\mathbf{w} - \mathbf{w}_{p} + \ln\left(\frac{\mathcal{B}(1-R_{S})}{R_{S}(1-\mathcal{B})}\right) \cdot \sum_{i=1}^{m} \Phi'\left(\frac{y_{i}\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|}\right) \frac{y_{i}\boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|} \right] \text{ (for } F_{2.1})$$

$$C\sum_{i=1}^{m} \Phi'\left(\frac{y_i \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)}{\|\boldsymbol{\phi}(\mathbf{x}_i)\|}\right) \frac{y_i \boldsymbol{\phi}(\mathbf{x}_i)}{\|\boldsymbol{\phi}(\mathbf{x}_i)\|} + (\mathbf{w} - \mathbf{w}_p) \text{ (for } F_{2.2}).$$

Gradient of the PAC-Bayes bound Learning algorithms

- Does there exists a more efficient learning algorithm?
- The probit loss Φ(a) is quasi-convex in a. (Nice!)
- The sum of two quasi-convex functions is (generally) not quasi-convex.
- Hence, $R_S(G_{Q_w})$ is (generally) not quasi-convex. (Not nice)
- B(S, w, δ) does have several local minima on some data sets. This is especially true for F_{2,2} when C is large.
- Each function minimization of $F_{2,2}$ consisted of k different gradient-descent runs. (We used k = 10 for $C \le 10$, and k = 100 for C > 10.)

Gradient of the PAC-Bayes bound Learning algorithms

- Does there exists a more efficient learning algorithm?
- The probit loss Φ(a) is quasi-convex in a. (Nice!)
- The sum of two quasi-convex functions is (generally) not quasi-convex.
- Hence, $R_S(G_{Q_w})$ is (generally) not quasi-convex. (Not nice)
- B(S, w, δ) does have several local minima on some data sets. This is especially true for F_{2,2} when C is large.
- Each function minimization of $F_{2,2}$ consisted of k different gradient-descent runs. (We used k = 10 for $C \le 10$, and k = 100 for C > 10.)

Gradient of the PAC-Bayes bound Learning algorithms

- Does there exists a more efficient learning algorithm?
- The probit loss $\Phi(a)$ is quasi-convex in a. (Nice!)
- The sum of two quasi-convex functions is (generally) not quasi-convex.
- Hence, $R_S(G_{Q_w})$ is (generally) not quasi-convex. (Not nice)
- B(S, w, δ) does have several local minima on some data sets. This is especially true for F_{2,2} when C is large.
- Each function minimization of $F_{2,2}$ consisted of k different gradient-descent runs. (We used k = 10 for $C \le 10$, and k = 100 for C > 10.)

Gradient of the PAC-Bayes bound Learning algorithms

- Does there exists a more efficient learning algorithm?
- The probit loss $\Phi(a)$ is quasi-convex in a. (Nice!)
- The sum of two quasi-convex functions is (generally) not quasi-convex.
- Hence, $R_S(G_{Q_w})$ is (generally) not quasi-convex. (Not nice)
- B(S, w, δ) does have several local minima on some data sets. This is especially true for F_{2,2} when C is large.
- Each function minimization of $F_{2,2}$ consisted of k different gradient-descent runs. (We used k = 10 for $C \le 10$, and k = 100 for C > 10.)

Gradient of the PAC-Bayes bound Learning algorithms

Why gradient descent?

- Does there exists a more efficient learning algorithm?
- The probit loss $\Phi(a)$ is quasi-convex in a. (Nice!)
- The sum of two quasi-convex functions is (generally) not quasi-convex.
- Hence, $R_S(G_{Q_w})$ is (generally) not quasi-convex. (Not nice)
- B(S, w, δ) does have several local minima on some data sets. This is especially true for F_{2.2} when C is large.
- Each function minimization of $F_{2,2}$ consisted of k different gradient-descent runs. (We used k = 10 for $C \le 10$, and k = 100 for C > 10.)

Gradient of the PAC-Bayes bound Learning algorithms

- Does there exists a more efficient learning algorithm?
- The probit loss $\Phi(a)$ is quasi-convex in a. (Nice!)
- The sum of two quasi-convex functions is (generally) not quasi-convex.
- Hence, $R_S(G_{Q_w})$ is (generally) not quasi-convex. (Not nice)
- B(S, w, δ) does have several local minima on some data sets. This is especially true for F_{2.2} when C is large.
- Each function minimization of $F_{2.2}$ consisted of k different gradient-descent runs. (We used k = 10 for $C \le 10$, and k = 100 for C > 10.)

Gradient of the PAC-Bayes bound Learning algorithms

Primal and Dual Versions

Each proposed algorithm has a primal ({w₁,..., w_N}) and a dual ({α₁,..., α_m}) version

$$\mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \phi(\mathbf{x}_i) \quad ; \quad k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x}) \cdot \phi(\mathbf{x}')$$

- Decision stumps was used for the primal versions (and compared with AdaBoost).
- The RBF kernel was used for the dual versions (and compared with the soft-margin SVM).

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2}\|\mathbf{x} - \mathbf{x}'\|^2/\sigma^2\right)$$

Gradient of the PAC-Bayes bound Learning algorithms

Primal and Dual Versions

Each proposed algorithm has a primal ({w₁,..., w_N}) and a dual ({α₁,..., α_m}) version

$$\mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \phi(\mathbf{x}_i) \quad ; \quad k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x}) \cdot \phi(\mathbf{x}')$$

- Decision stumps was used for the primal versions (and compared with AdaBoost).
- The RBF kernel was used for the dual versions (and compared with the soft-margin SVM).

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2}\|\mathbf{x} - \mathbf{x}'\|^2/\sigma^2\right)$$

Gradient of the PAC-Bayes bound Learning algorithms

Primal and Dual Versions

Each proposed algorithm has a primal ({w₁,..., w_N}) and a dual ({α₁,..., α_m}) version

$$\mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \phi(\mathbf{x}_i) \quad ; \quad k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x}) \cdot \phi(\mathbf{x}')$$

- Decision stumps was used for the primal versions (and compared with AdaBoost).
- The RBF kernel was used for the dual versions (and compared with the soft-margin SVM).

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2}\|\mathbf{x} - \mathbf{x}'\|^2/\sigma^2\right)$$

Gradient of the PAC-Bayes bound Learning algorithms

Three Learning Algorithms

- **PBGD1** uses P_0 (*i.e.*, $\mathbf{w}_p = \mathbf{0}$) to learn $Q_{\mathbf{w}}$ by minimizing $F_{2.1}$ (with $\delta = .05$).
- **PBGD3** minimizes $F_{2,2}$ (with P_0) but uses 10-fold CV to choose the value of C.
- PBGD2 uses half of the training data to "learn a good prior".
 - Minimize $F_{2,2}$ (with P_0) on first half of training data for $C \in \{10^k : k = 0, \dots, 6\}$. This gives $\{w_0, \dots, w_n\}$.
 - Minimize F_{2.1} with P_{w0},..., P_{w0} on the other half of examples and keep the final classifier that minimizes Corollary 2.1.

 REMARK: PBGD1 and PBGD2 are true bound-minimization algorithms (but not PBGD3)

Gradient of the PAC-Bayes bound Learning algorithms

Three Learning Algorithms

- **PBGD1** uses P_0 (*i.e.*, $\mathbf{w}_p = \mathbf{0}$) to learn $Q_{\mathbf{w}}$ by minimizing $F_{2.1}$ (with $\delta = .05$).
- **PBGD3** minimizes $F_{2,2}$ (with P_0) but uses 10-fold CV to choose the value of *C*.
- PBGD2 uses half of the training data to "learn a good prior".

 Minimize F_{2,2} (with P₀) on first half of training data for C ∈ {10^k : k = 0,...,6}. This gives {w₀,...,w₆}.

 Minimize F_{2.1} with P_{w0},..., P_{w0} on the other half of examples and keep the final classifier that minimizes Corollary 2.1.

 REMARK: PBGD1 and PBGD2 are true bound-minimization algorithms (but not PBGD3)

Gradient of the PAC-Bayes bound Learning algorithms

Three Learning Algorithms

- **PBGD1** uses P_0 (*i.e.*, $\mathbf{w}_p = \mathbf{0}$) to learn $Q_{\mathbf{w}}$ by minimizing $F_{2.1}$ (with $\delta = .05$).
- **PBGD3** minimizes $F_{2,2}$ (with P_0) but uses 10-fold CV to choose the value of *C*.
- PBGD2 uses half of the training data to "learn a good prior".
 - Minimize $F_{2,2}$ (with P_0) on first half of training data for $C \in \{10^k : k = 0, ..., 6\}$. This gives $\{\mathbf{w}_0, ..., \mathbf{w}_6\}$.
 - Minimize F_{2.1} with P_{w0},..., P_{w6} on the other half of examples and keep the final classifier that minimizes Corollary 2.1.
- REMARK: PBGD1 and PBGD2 are true bound-minimization algorithms (but not PBGD3)

Gradient of the PAC-Bayes bound Learning algorithms

Three Learning Algorithms

- **PBGD1** uses P_0 (*i.e.*, $\mathbf{w}_p = \mathbf{0}$) to learn $Q_{\mathbf{w}}$ by minimizing $F_{2.1}$ (with $\delta = .05$).
- **PBGD3** minimizes $F_{2,2}$ (with P_0) but uses 10-fold CV to choose the value of *C*.
- PBGD2 uses half of the training data to "learn a good prior".
 - Minimize $F_{2,2}$ (with P_0) on first half of training data for $C \in \{10^k : k = 0, ..., 6\}$. This gives $\{\mathbf{w}_0, ..., \mathbf{w}_6\}$.

 Minimize F_{2.1} with P_{w0},..., P_{w6} on the other half of examples and keep the final classifier that minimizes Corollary 2.1.

 REMARK: PBGD1 and PBGD2 are true bound-minimization algorithms (but not PBGD3)

Gradient of the PAC-Bayes bound Learning algorithms

Three Learning Algorithms

- **PBGD1** uses P_0 (*i.e.*, $\mathbf{w}_p = \mathbf{0}$) to learn $Q_{\mathbf{w}}$ by minimizing $F_{2.1}$ (with $\delta = .05$).
- **PBGD3** minimizes $F_{2,2}$ (with P_0) but uses 10-fold CV to choose the value of *C*.
- PBGD2 uses half of the training data to "learn a good prior".
 - Minimize $F_{2,2}$ (with P_0) on first half of training data for $C \in \{10^k : k = 0, ..., 6\}$. This gives $\{\mathbf{w}_0, ..., \mathbf{w}_6\}$.
 - Minimize F_{2.1} with P_{w0},..., P_{w6} on the other half of examples and keep the final classifier that minimizes Corollary 2.1.

 REMARK: PBGD1 and PBGD2 are true bound-minimization algorithms (but not PBGD3)

Gradient of the PAC-Bayes bound Learning algorithms

Three Learning Algorithms

- **PBGD1** uses P_0 (*i.e.*, $\mathbf{w}_p = \mathbf{0}$) to learn $Q_{\mathbf{w}}$ by minimizing $F_{2.1}$ (with $\delta = .05$).
- **PBGD3** minimizes $F_{2,2}$ (with P_0) but uses 10-fold CV to choose the value of *C*.
- PBGD2 uses half of the training data to "learn a good prior".
 - Minimize $F_{2,2}$ (with P_0) on first half of training data for $C \in \{10^k : k = 0, ..., 6\}$. This gives $\{\mathbf{w}_0, ..., \mathbf{w}_6\}$.
 - Minimize F_{2.1} with P_{w0},..., P_{w6} on the other half of examples and keep the final classifier that minimizes Corollary 2.1.
- REMARK: PBGD1 and PBGD2 are true bound-minimization algorithms (but not PBGD3).

イロト イポト イラト イラト

Results with decision stumps Results with a RBF kernel Conclusion

Experimental Methodology

- Extensive results on UCI and MNIST data sets.
- About half of the data was used for training and half for testing (except for MNIST and Letters where more than 65% was used for testing).
- The binomial tail inversion test set method (Langford, JMLR 2005) was used to determine statistical significance: see the SSB column in the next tables.

・ロト ・ 同ト ・ ヨト ・ ヨト

Results with decision stumps Results with a RBF kernel Conclusion

Experimental Methodology

- Extensive results on UCI and MNIST data sets.
- About half of the data was used for training and half for testing (except for MNIST and Letters where more than 65% was used for testing).
- The binomial tail inversion test set method (Langford, JMLR 2005) was used to determine statistical significance: see the SSB column in the next tables.

・ロト ・ 同ト ・ ヨト ・ ヨト

Results with decision stumps Results with a RBF kernel Conclusion

Experimental Methodology

- Extensive results on UCI and MNIST data sets.
- About half of the data was used for training and half for testing (except for MNIST and Letters where more than 65% was used for testing).
- The binomial tail inversion test set method (Langford, JMLR 2005) was used to determine statistical significance: see the SSB column in the next tables.

・ロト ・ 同ト ・ ヨト ・ ヨト

Results with decision stumps Results with a RBF kernel Conclusion

Dataset	(A) AdaBoost		(1) PBGD1		(2) PBGD2		(3) PBGD3		SSB
Name	Risk	Bound	Risk	Bound	Risk	Bound	Risk	Bound	
Usvotes	0.055	0.346	0.085	0.207	0.060	0.165	0.060	0.261	
Credit-A	0.170	0.504	0.177	0.375	0.187	0.272	0.143	0.420	
Glass	0.178	0.636	0.196	0.562	0.168	0.395	0.150	0.581	
Haberman	0.260	0.590	0.273	0.422	0.267	0.465	0.273	0.424	
Heart	0.259	0.569	0.170	0.461	0.190	0.379	0.184	0.473	
Sonar	0.231	0.644	0.269	0.579	0.173	0.547	0.125	0.622	
BreastCancer	0.053	0.295	0.041	0.129	0.047	0.104	0.044	0.190	
Tic-tac-toe	0.357	0.483	0.294	0.462	0.207	0.302	0.207	0.474	2,3 <a,1< td=""></a,1<>
lonosphere	0.120	0.602	0.120	0.425	0.109	0.347	0.103	0.557	
Wdbc	0.049	0.447	0.042	0.272	0.049	0.147	0.035	0.319	
MNIST:0vs8	0.008	0.528	0.015	0.191	0.011	0.062	0.006	0.262	
MNIST:1vs7	0.013	0.541	0.020	0.184	0.015	0.050	0.016	0.233	
MNIST:1vs8	0.025	0.552	0.037	0.247	0.027	0.087	0.018	0.305	3<1
MNIST:2vs3	0.047	0.558	0.046	0.264	0.040	0.105	0.034	0.356	
Letter:AvsB	0.010	0.254	0.009	0.180	0.007	0.065	0.007	0.180	
Letter:DvsO	0.036	0.378	0.043	0.314	0.033	0.090	0.024	0.360	
Letter:OvsQ	0.038	0.431	0.061	0.357	0.053	0.106	0.042	0.454	
Adult	0.149	0.394	0.168	0.270	0.169	0.209	0.159	0.364	A<1,2
Mushroom	0.000	0.200	0.046	0.130	0.016	0.030	0.002	0.150	A,3<2<1

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ξ.

Motivation

Simplified PAC-Bayes Theory Specialization to Linear Classifiers PAC-Bayesian Gradient Descent Numerical Results

Results with decision stumps Results with a RBF kernel Conclusion

Dataset	(S) SVM		(1) PBGD1		(2) PBGD2		(3) PBGD3		SSB
Name	Risk	Bound	Risk	Bound	Risk	Bound	Risk	Bound	
Usvotes	0.055	0.370	0.080	0.244	0.050	0.153	0.075	0.332	
Credit-A	0.183	0.591	0.150	0.341	0.150	0.248	0.160	0.375	
Glass	0.178	0.571	0.168	0.539	0.215	0.430	0.168	0.541	
Haberman	0.280	0.423	0.280	0.417	0.327	0.444	0.253	0.555	
Heart	0.197	0.513	0.190	0.441	0.184	0.400	0.197	0.520	
Sonar	0.163	0.599	0.250	0.560	0.173	0.477	0.144	0.585	
BreastCancer	0.038	0.146	0.044	0.132	0.041	0.101	0.047	0.162	
Tic-tac-toe	0.081	0.555	0.365	0.426	0.173	0.287	0.077	0.548	S,3<2<1
lonosphere	0.097	0.531	0.114	0.395	0.103	0.376	0.091	0.465	
Wdbc	0.074	0.400	0.074	0.366	0.067	0.298	0.074	0.367	
MNIST:0vs8	0.003	0.257	0.009	0.202	0.007	0.058	0.004	0.320	
MNIST:1vs7	0.011	0.216	0.014	0.161	0.009	0.052	0.010	0.250	
MNIST:1vs8	0.011	0.306	0.014	0.204	0.011	0.060	0.010	0.291	
MNIST:2vs3	0.020	0.348	0.038	0.265	0.028	0.096	0.023	0.326	S<1
Letter:AvsB	0.001	0.491	0.005	0.170	0.003	0.064	0.001	0.485	
Letter:DvsO	0.014	0.395	0.017	0.267	0.024	0.086	0.013	0.350	
Letter:OvsQ	0.015	0.332	0.029	0.299	0.019	0.078	0.014	0.329	
Adult	0.159	0.535	0.173	0.274	0.180	0.224	0.164	0.372	S,3<2
Mushroom	0.000	0.213	0.007	0.119	0.001	0.011	0.000	0.167	S,2,3<1

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ξ.

Results with decision stumps Results with a RBF kernel Conclusion

Conclusion

• **PBGD2** is better than **PBGD1** (for R_T and bound).

Using half of the data to learn a prior helps.

PBGD3 is a bit better than PBGD2.

right trade-off between $R_S(G_Q)$ and KL(Q|P):

- PBGD3 is a little bit better than AdaBoost and SVM (perhaps) but it is much slower (several local minima).
 In practice, I would still use the SVM instead of PBGD3
- **PBGD2** is the best choice if obtaining a good guarantee on the true risk is mandatory.

Results with decision stumps Results with a RBF kernel Conclusion

Conclusion

- **PBGD2** is better than **PBGD1** (for R_T and bound).
 - Using half of the data to learn a prior helps.
- **PBGD3** is a bit better than **PBGD2**.
 - The bound is a bit worse than CV for finding quantitatively the right trade-off between R_S(G_Q) and KL(Q||P).
- PBGD3 is a little bit better than AdaBoost and SVM (perhaps) but it is much slower (several local minima).
 In practice, I would still use the SVM instead of PBGD
- **PBGD2** is the best choice if obtaining a good guarantee on the true risk is mandatory.

Results with decision stumps Results with a RBF kernel Conclusion

Conclusion

- **PBGD2** is better than **PBGD1** (for R_T and bound).
 - Using half of the data to learn a prior helps.
- PBGD3 is a bit better than PBGD2.
 - The bound is a bit worse than CV for finding quantitatively the right trade-off between $R_S(G_Q)$ and $\mathrm{KL}(Q||P)$.
- PBGD3 is a little bit better than AdaBoost and SVM (perhaps) but it is much slower (several local minima).
 - In practice, I would still use the SVM instead of PBGD3.
- **PBGD2** is the best choice if obtaining a good guarantee on the true risk is mandatory.

Results with decision stumps Results with a RBF kernel Conclusion

Conclusion

- **PBGD2** is better than **PBGD1** (for R_T and bound).
 - Using half of the data to learn a prior helps.
- PBGD3 is a bit better than PBGD2.
 - The bound is a bit worse than CV for finding quantitatively the right trade-off between $R_S(G_Q)$ and $\mathrm{KL}(Q||P)$.
- PBGD3 is a little bit better than AdaBoost and SVM (perhaps) but it is much slower (several local minima).
 - In practice, I would still use the SVM instead of PBGD3.
- **PBGD2** is the best choice if obtaining a good guarantee on the true risk is mandatory.
Motivation Simplified PAC-Bayes Theory Specialization to Linear Classifiers PAC-Bayesian Gradient Descent Numerical Results

Results with decision stumps Results with a RBF kernel Conclusion

Conclusion

- **PBGD2** is better than **PBGD1** (for R_T and bound).
 - Using half of the data to learn a prior helps.
- PBGD3 is a bit better than PBGD2.
 - The bound is a bit worse than CV for finding quantitatively the right trade-off between $R_S(G_Q)$ and $\mathrm{KL}(Q||P)$.
- PBGD3 is a little bit better than AdaBoost and SVM (perhaps) but it is much slower (several local minima).
 - In practice, I would still use the SVM instead of PBGD3.
- **PBGD2** is the best choice if obtaining a good guarantee on the true risk is mandatory.

イロト イポト イヨト イヨト

Motivation Simplified PAC-Bayes Theory Specialization to Linear Classifiers PAC-Bayesian Gradient Descent Numerical Results

Results with decision stumps Results with a RBF kernel Conclusion

Conclusion

- **PBGD2** is better than **PBGD1** (for R_T and bound).
 - Using half of the data to learn a prior helps.
- PBGD3 is a bit better than PBGD2.
 - The bound is a bit worse than CV for finding quantitatively the right trade-off between $R_S(G_Q)$ and $\mathrm{KL}(Q||P)$.
- PBGD3 is a little bit better than AdaBoost and SVM (perhaps) but it is much slower (several local minima).
 - In practice, I would still use the SVM instead of PBGD3.
- **PBGD2** is the best choice if obtaining a good guarantee on the true risk is mandatory.

イロト イポト イヨト イヨト

Motivation Simplified PAC-Bayes Theory Specialization to Linear Classifiers PAC-Bayesian Gradient Descent Numerical Results

Results with decision stumps Results with a RBF kernel Conclusion

Conclusion

- **PBGD2** is better than **PBGD1** (for R_T and bound).
 - Using half of the data to learn a prior helps.
- PBGD3 is a bit better than PBGD2.
 - The bound is a bit worse than CV for finding quantitatively the right trade-off between $R_S(G_Q)$ and $\mathrm{KL}(Q||P)$.
- PBGD3 is a little bit better than AdaBoost and SVM (perhaps) but it is much slower (several local minima).
 - In practice, I would still use the SVM instead of PBGD3.
- **PBGD2** is the best choice if obtaining a good guarantee on the true risk is mandatory.