
Motivation
Simplified PAC-Bayes Theory

Specialization to Linear Classifiers
PAC-Bayesian Gradient Descent

Numerical Results

PAC-Bayesian Learning of Linear Classifiers
Laval University, Quebec city, Canada

P. Germain A. Lacasse F. Laviolette M. Marchand

June 17, 2009

P. Germain, A. Lacasse, F. Laviolette, M. Marchand PAC-Bayesian Learning of Linear Classifiers 1/25



Motivation
Simplified PAC-Bayes Theory

Specialization to Linear Classifiers
PAC-Bayesian Gradient Descent

Numerical Results

In search of an optimization problem for learning
PAC-Bayesian bound minimization
Summary

In search of an optimization problem for learning

The goal of the learner is to try to find a classifier h with the
smallest possible risk R(h)

R(h)
def
= Pr

(x,y)∼D

{
h(x) 6= y

}
= E

(x,y)∼D
I (h(x) 6= y) .

However, we do not know the data-generating distribution D.

We have only access to S
def
= {(x1, y1) . . . (xm, ym)}: a

training set of m examples, each generated according to D.

What should the learner optimize on S to obtain a
classifier h having the smallest possible risk R(h)?
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Summary

PAC-Bayesian bound minimization

Several objective functions (to minimize on S) have been
proposed.

The soft-margin SVM, AdaBoost, ridge regression. . .

But the final rigorous (and accepted) guarantee is always a
risk bound that holds uniformly over a space of classifiers.

Let us try to design an efficient learning algorithm that
minimizes the PAC-Bayes bound.
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Summary

A simple and general theorem from which all other known
PAC-Bayes bound can be simply derived.

Specialization to linear classifiers.

Gradient descent of the PAC-Bayes bound: three different
learning algorithms.

Extensive numerical results and comparison with AdaBoost
and the SVM.
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Definitions

The (true) risk R(h) and training error RS(h) are defined as:

R(h)
def
= E

(x,y)∼D
I (h(x) 6= y) ; RS(h)

def
=

1

m

m∑
i=1

I (h(xi ) 6= yi ) .

The learner’s goal is to choose a posterior distribution Q on
a space H of classifiers such that the risk of the Q-weighted
majority vote BQ is as small as possible.

PAC-Bayes bounds the risk of the Gibbs classifier GQ . To
predict the label of x, GQ draws h from H and predicts h(x).

The risk and the training error of GQ are thus defined as:

R(GQ) = E
h∼Q

R(h) ; RS(GQ) = E
h∼Q

RS(h) .
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GQ , BQ , and KL(Q‖P)

If BQ misclassifies x, then at least half of the classifiers (under
measure Q) err on x. Then R(BQ) ≤ 2R(GQ): An upper
bound on R(GQ) also gives an upper bound on R(BQ).

PAC-Bayes makes use of a prior distribution P on H.

The risk bound depends on the Kullback-Leibler divergence
KL(Q‖P):

KL(Q‖P)
def
= E

h∼Q
ln

Q(h)

P(h)
.

We will also make use of the of the KL divergence between
Bernoulli distributions of probability of success p and q:

kl(q, p)
def
= q ln

q

p
+ (1− q) ln

1− q

1− p
.
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The General PAC-Bayes Theorem

Theorem 1

For any distribution D, for any set H of classifiers, for any prior
distribution P of support H, for any δ ∈ (0, 1], and for any convex
function D : [0, 1]× [0, 1]→ R, we have

Pr
S∼Dm

(
∀Q onH : D(RS(GQ),R(GQ)) ≤

1

m

[
KL(Q‖P) + ln

(
1

δ
E

S∼Dm
E

h∼P
emD(RS (h),R(h))

)])
≥ 1− δ .
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The Langford (2005) and Seeger (2002) bound

We recover a slightly tighter version if D(q, p) = kl(q, p) and

E
S∼Dm

E
h∼P

em kl(RS (h),R(h)) =
m∑

k=0

(
m

k

)
(k/m)k(1− k/m)m−k

def
= ξ(m) ∈ Θ(

√
m) .

Corollary 2.1

For any D, any H, any P of support H, any δ ∈ (0, 1], we have

Pr
S∼Dm

(
∀Q onH : kl(RS(GQ),R(GQ)) ≤

1

m

[
KL(Q‖P) + ln

ξ(m)

δ

])
≥ 1− δ ,
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Graphical illustration of the Langford-Seeger bound
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A bound also found by Catoni (2007)

Let D(q, p) = F(p)− C · q. Then

E
S∼Dm

E
h∼P

emD(RS (h),R(h)) = E
h∼P

emF(R(h))
(
R(h)e−C + (1− R(h))

)m
.

Corollary 2.2

For any D, any H, any P of support H, any δ ∈ (0, 1], and any
positive real number C , we have

Pr
S∼Dm


∀Q onH :

R(GQ) ≤ 1
1−e−C

{
1−exp

[
−
(
C ·RS(GQ)

+ 1
m

[
KL(Q‖P) + ln 1

δ

])]}
 ≥ 1 − δ.
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Observations about Corollary 2.2

GQ is minimizing the bound of Corollary 2.2 iff it minimizes
the following cost function (linear in RS(GQ)):

C m RS(GQ) + KL(Q‖P)

However, we have hyperparameter C to tune (in contrast
with the bound of Corollary 2.1).

Corollary 2.1 gives a bound which is always tighter except for
a narrow range of C values.

In fact, if we would replace ξ(m) by one, Corollary 2.1 would
always give a tighter bound.
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Linear classifiers
Bayes-equivalent classifiers
Objective functions to minimize

Linear classifiers

Each x is mapped to a high-dimensional feature vector φφφ(x):

φφφ(x)
def
= (φ1(x), . . . , φN(x)) .

φφφ is often implicitly given by a Mercer kernel

k(x, x′) = φφφ(x) ·φφφ(x′) .

The output hv(x) of linear classifier hv with weight vector v is
given by

hv(x) = sgn (v ·φφφ(x)) .

Each posterior Qw is an isotropic Gaussian centered on w:

Qw(v) =

(
1√
2π

)N

exp

(
−1

2
‖v −w‖2

)
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Qw(v) =

(
1√
2π

)N

exp

(
−1

2
‖v −w‖2

)
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Bayes-equivalent classifiers

With this choice for Qw, the majority vote BQw is the same
classifier as hw since:

BQw (x) = sgn
(

E
v∼Qw

sgn (v ·φφφ(x))

)
= sgn (w ·φφφ(x)) = hw(x) .

Thus R(hw) = R(BQw ) ≤ 2R(GQw ): an upper bound on
R(GQw ) also provides an upper bound on R(hw).

The prior Pwp is also an isotropic Gaussian centered on wp.
Consequently:

KL(Qw‖Pwp ) =
1

2
‖w −wp‖2 .
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Gibbs’ risk

We need to compute Gibb’s risk R(x,y)(GQw ) on (x, y) since:

R(x,y)(GQw )
def
=

∫
RN

dvQw(v)I (yv ·φφφ(x) < 0)

R(GQw ) = E
(x,y)∼D

R(x,y)(GQw ) ; RS(GQw ) =
1

m

m∑
i=1

R(xi ,yi )(GQw ) .

As in Langford (2005), the Gaussian integral gives:

R(x,y)(GQw ) = Φ
(
‖w‖ Γw(x, y)

)
; where:

Γw(x, y)
def
=

yw ·φφφ(x)

‖w‖ ‖φφφ(x)‖
; Φ(a)

def
=

1√
2π

∫ ∞
a

exp

(
−1

2
x2

)
dx .
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Probit loss
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Objective function from Corollary 2.1

From Corollary 2.1, we need to find w minimizing:

B(S ,w, δ)
def
= sup

{
ε : kl(RS(GQw )‖ε) ≤

1

m

[
KL(Qw‖Pwp ) + ln

ξ(m)

δ

]}
F (2.1) ,

for a fixed δ (say δ = 0.05). Hence we need to find w minimizing B
subject to:

kl
(
RS(GQw )

∥∥∥B) =
1

m

[
KL(Qw‖Pwp ) + ln

ξ(m)

δ

]
B > RS(GQw ) .
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Objective function from Corollary 2.2

From Corollary 2.2, for fixed C and wp, we need to find w
minimizing:

CmRS(GQw ) + KL(Qw‖Pwp ) =

C
m∑

i=1

Φ
(yiw ·φφφ(xi )

‖φφφ(xi )‖

)
+

1

2
‖w −wp‖2 (F2.2) ,

We have the same regularizer as the SVM when wp = 0 (absence
of prior knowledge). Indeed, SVM minimizes:

C
m∑

i=1

max
(

0, 1− yiw ·φφφ(xi )
)

+
1

2
‖w‖2 ,

(The probit loss is replaced by the convex hinge loss.)
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Gradient of the PAC-Bayes bound

We performed the Polak-Ribière conjugate gradient descent
(GSL implementation).

For this, we only need to compute the gradient ∇wB.

For F2.1 and F2.2, we find that ∇wB is given, respectively, by:

1

m

B(1− B)

B − RS

[
w −wp + ln

(
B(1− RS)

RS(1− B)

)
·

m∑
i=1

Φ′
(

yiw ·φφφ(xi )

‖φφφ(xi )‖

)
yiφφφ(xi )

‖φφφ(xi )‖

]
(for F2.1)

C
m∑

i=1

Φ′
(

yiw ·φφφ(xi )

‖φφφ(xi )‖

)
yiφφφ(xi )

‖φφφ(xi )‖
+ (w −wp) (for F2.2) .
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Learning algorithms

Why gradient descent?

Does there exists a more efficient learning algorithm?

The probit loss Φ(a) is quasi-convex in a. (Nice!)

The sum of two quasi-convex functions is (generally) not
quasi-convex.

Hence, RS(GQw ) is (generally) not quasi-convex. (Not nice)

B(S ,w, δ) does have several local minima on some data sets.
This is especially true for F2.2 when C is large.

Each function minimization of F2.2 consisted of k different
gradient-descent runs. (We used k = 10 for C ≤ 10, and
k = 100 for C > 10.)
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Primal and Dual Versions

Each proposed algorithm has a primal ({w1, . . . ,wN}) and a
dual ({α1, . . . , αm}) version

w =
m∑

i=1

αiyiφφφ(xi ) ; k(x, x′) = φφφ(x) ·φφφ(x′)

Decision stumps was used for the primal versions (and
compared with AdaBoost).

The RBF kernel was used for the dual versions (and compared
with the soft-margin SVM).

k(x, x′) = exp

(
−1

2
‖x− x′‖2/σ2

)
.
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Three Learning Algorithms

PBGD1 uses P0 (i.e., wp = 0) to learn Qw by minimizing
F2.1 (with δ = .05).

PBGD3 minimizes F2.2 (with P0) but uses 10-fold CV to
choose the value of C .

PBGD2 uses half of the training data to “learn a good prior”.

Minimize F2.2 (with P0) on first half of training data for
C ∈ {10k : k = 0, . . . , 6}. This gives {w0, . . . ,w6}.
Minimize F2.1 with Pw0 , . . . ,Pw6 on the other half of examples
and keep the final classifier that minimizes Corollary 2.1.

REMARK: PBGD1 and PBGD2 are true
bound-minimization algorithms (but not PBGD3).
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PBGD2 uses half of the training data to “learn a good prior”.

Minimize F2.2 (with P0) on first half of training data for
C ∈ {10k : k = 0, . . . , 6}. This gives {w0, . . . ,w6}.
Minimize F2.1 with Pw0 , . . . ,Pw6 on the other half of examples
and keep the final classifier that minimizes Corollary 2.1.

REMARK: PBGD1 and PBGD2 are true
bound-minimization algorithms (but not PBGD3).
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Experimental Methodology

Extensive results on UCI and MNIST data sets.

About half of the data was used for training and half for
testing (except for MNIST and Letters where more than 65%
was used for testing).

The binomial tail inversion test set method (Langford, JMLR
2005) was used to determine statistical significance: see the
SSB column in the next tables.
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Dataset (A) AdaBoost (1) PBGD1 (2) PBGD2 (3) PBGD3 SSB
Name Risk Bound Risk Bound Risk Bound Risk Bound
Usvotes 0.055 0.346 0.085 0.207 0.060 0.165 0.060 0.261
Credit-A 0.170 0.504 0.177 0.375 0.187 0.272 0.143 0.420
Glass 0.178 0.636 0.196 0.562 0.168 0.395 0.150 0.581
Haberman 0.260 0.590 0.273 0.422 0.267 0.465 0.273 0.424
Heart 0.259 0.569 0.170 0.461 0.190 0.379 0.184 0.473
Sonar 0.231 0.644 0.269 0.579 0.173 0.547 0.125 0.622
BreastCancer 0.053 0.295 0.041 0.129 0.047 0.104 0.044 0.190
Tic-tac-toe 0.357 0.483 0.294 0.462 0.207 0.302 0.207 0.474 2,3<A,1
Ionosphere 0.120 0.602 0.120 0.425 0.109 0.347 0.103 0.557
Wdbc 0.049 0.447 0.042 0.272 0.049 0.147 0.035 0.319
MNIST:0vs8 0.008 0.528 0.015 0.191 0.011 0.062 0.006 0.262
MNIST:1vs7 0.013 0.541 0.020 0.184 0.015 0.050 0.016 0.233
MNIST:1vs8 0.025 0.552 0.037 0.247 0.027 0.087 0.018 0.305 3<1
MNIST:2vs3 0.047 0.558 0.046 0.264 0.040 0.105 0.034 0.356
Letter:AvsB 0.010 0.254 0.009 0.180 0.007 0.065 0.007 0.180
Letter:DvsO 0.036 0.378 0.043 0.314 0.033 0.090 0.024 0.360
Letter:OvsQ 0.038 0.431 0.061 0.357 0.053 0.106 0.042 0.454
Adult 0.149 0.394 0.168 0.270 0.169 0.209 0.159 0.364 A<1,2
Mushroom 0.000 0.200 0.046 0.130 0.016 0.030 0.002 0.150 A,3<2<1
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Dataset (S) SVM (1) PBGD1 (2) PBGD2 (3) PBGD3 SSB
Name Risk Bound Risk Bound Risk Bound Risk Bound
Usvotes 0.055 0.370 0.080 0.244 0.050 0.153 0.075 0.332
Credit-A 0.183 0.591 0.150 0.341 0.150 0.248 0.160 0.375
Glass 0.178 0.571 0.168 0.539 0.215 0.430 0.168 0.541
Haberman 0.280 0.423 0.280 0.417 0.327 0.444 0.253 0.555
Heart 0.197 0.513 0.190 0.441 0.184 0.400 0.197 0.520
Sonar 0.163 0.599 0.250 0.560 0.173 0.477 0.144 0.585
BreastCancer 0.038 0.146 0.044 0.132 0.041 0.101 0.047 0.162
Tic-tac-toe 0.081 0.555 0.365 0.426 0.173 0.287 0.077 0.548 S,3<2<1
Ionosphere 0.097 0.531 0.114 0.395 0.103 0.376 0.091 0.465
Wdbc 0.074 0.400 0.074 0.366 0.067 0.298 0.074 0.367
MNIST:0vs8 0.003 0.257 0.009 0.202 0.007 0.058 0.004 0.320
MNIST:1vs7 0.011 0.216 0.014 0.161 0.009 0.052 0.010 0.250
MNIST:1vs8 0.011 0.306 0.014 0.204 0.011 0.060 0.010 0.291
MNIST:2vs3 0.020 0.348 0.038 0.265 0.028 0.096 0.023 0.326 S<1
Letter:AvsB 0.001 0.491 0.005 0.170 0.003 0.064 0.001 0.485
Letter:DvsO 0.014 0.395 0.017 0.267 0.024 0.086 0.013 0.350
Letter:OvsQ 0.015 0.332 0.029 0.299 0.019 0.078 0.014 0.329
Adult 0.159 0.535 0.173 0.274 0.180 0.224 0.164 0.372 S,3<2
Mushroom 0.000 0.213 0.007 0.119 0.001 0.011 0.000 0.167 S,2,3<1
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Conclusion

PBGD2 is better than PBGD1 (for RT and bound).

Using half of the data to learn a prior helps.

PBGD3 is a bit better than PBGD2.

The bound is a bit worse than CV for finding quantitatively the
right trade-off between RS(GQ) and KL(Q‖P).

PBGD3 is a little bit better than AdaBoost and SVM
(perhaps) but it is much slower (several local minima).

In practice, I would still use the SVM instead of PBGD3.

PBGD2 is the best choice if obtaining a good guarantee on
the true risk is mandatory.
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