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Introduction



Aims

To better understand loss functions through:

I Translation: Make work on risk from other fields ML-friendly

I Unification: Find key concepts underpinning existing results

I Generalisation: Propose generalisation of existing results

This approach led to:

I Simpler proofs of some existing results
I A new type of surrogate regret bound:

I Symmetric and non-symmetric surrogate losses
I Bounds on cost-weighted misclassification loss

(of which 0-1 loss is a special case)
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Key Concepts

Two elementary concepts underpin all the results in this talk:

Fisher Consistency

A loss is Fisher consistent for probability estimation
if its point-wise risk is minimised by the true
point-wise probability.

Taylor’s Theorem - Integral Form

Given a function f : [x0, x ] → R then

f (x) = f (x0) + f ′(x0)(x − x0) +

∫ x

x0

f ′(t)(x − t) dt



What is a loss?

A loss ` assigns a penalty `(y , h) to a prediction h ∈ R relative to
a label y .

Traditionally, losses in machine learning are margin losses:

`(y , h) = φ(yh)

where y ∈ {−1, 1} and φ : R → R.

These are necessarily symmetric in that

`(−1, h) = `(1,−h).
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Composite Losses

We study a general class of composite losses:

`ψ(y , h) = `(y , ψ−1(h))

where ψ : [0, 1] → R is an invertible link function that allows
predictions h ∈ R to be interpreted as probability estimates

η̂ = ψ−1(h).

We focus on the loss for probability estimation rather than the link.

Loss

A loss is a function ` : {0, 1} × [0, 1] → R such that

`(0, 0) = `(1, 1) = 0

which assigns a penalty `(y , η̂) for predicting that the probability
that y = 1 is η̂ ∈ [0, 1] when the true label is y .
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Risk

Aim is to find an estimator η̂ : X → [0, 1] that minimises the risk
w.r.t. some unknown distribution P

L(Y , η̂(X )) = E(X ,Y )∼P[`(Y , h(X ))]

= EX [EY∼η(X )[`(Y , η̂(X ))]]

Point-wise Risk

The point-wise risk of ` under Y ∼ η is

L(η, η̂) = EY∼η[`(Y , η̂)]

Point-wise Bayes Risk

The point-wise Bayes risk is the minimal point-wise risk

L(η) = inf
η̂∈R

L(η, η̂)
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Key Concepts: Fisher Consistency

Fisher Consistency

A loss `(y , η̂) is Fisher consistent if

L(η, η̂) = L(η) = inf
η̂∈[0,1]

L(η, η̂)

Proper Loss

A loss is said be proper if it is Fisher consistent.

Computing the point-wise Bayes risk of proper losses is easy.

Example (Square Loss)

L(η, η̂) = (1− η)η̂2 + η(1− η̂)2 so its Bayes risk is

L(η) = L(η, η) = (1− η)η
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Proper Losses: Examples

0-1 Loss

0.0 0.5 1.0

c

Square Loss

0.0 0.5 1.0

c

Log Loss

0.0 0.5 1.0

c

“Boosting” Loss

0.0 0.5 1.0

c

Cost-weighted Loss

0.0 0.5 1.0

c

Asymmetric Log Loss

0.0 0.5 1.0

c



Non-Proper Losses: Examples

Absolute Loss

0.0 0.5 1.0

c

Hinge Loss

0.0 0.5 1.0

c



Losses

Losses 

Symmetric / Margin

Proper 

Hinge

Log
Cost

Weighted

Square

0-1



Key Concepts: Taylor’s Theorem

Taylor’s Theorem - Integral Form

Given a function f : [x0, x ] → R then

f (x) = f (x0) + f ′(x0)(x − x0) +

∫ x

x0

f ′(t)(x − t) dt

Taylor’s Theorem - Alternative Form

For x , x0 ∈ [a, b] and f : [a, b] → R suitably differentiable

f (x) = f (x0) + f ′(x0)(x − x0) +

∫ b

a
gc(x , x0) f ′′(c) dc

where

gc(x , x0) =


(x − c) x0 < c ≤ x

(c − x) x < c ≤ x0

0 otherwise



Representations



Savage’s Theorem

Theorem (Savage, 1971)

A loss ` is proper iff its point-wise Bayes risk L is
concave and satisfies

L(η, η̂) = L(η̂) + (η − η̂)L′(η̂).

Proof sketch.

⇒ L(η) is infimum of L(η, η̂) which is a lower envelope of lines
thus concave, and L′(η) = `(1, η)− `(0, η).

⇐ Taylor expansion of Λ(η) about η̂ gives

Λ(η) = Λ(η̂) + (η − η̂)Λ′(η̂)︸ ︷︷ ︸
L(η,η̂)

+

∫ η

η̂
(η − c) Λ′′(c) dc︸ ︷︷ ︸

−B(η,η̂)

and since −Λ′′ ≥ 0, L = Λ + B is min when η̂ = η thus proper.
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Savage’s Theorem: Example

!

"

L
(!
,"
)

Log Loss

0.0 0.5 1.0

c

`(0, η̂) = − log(1− η̂)
`(1, η̂) = − log(η̂)

η 7→ L(η, 0.14)

η 7→ L(η, η)



Bregman Divergence

Definition (Bregman Divergence)

Given a convex function φ : R → R its Bregman Divergence is

Bφ(s, s0) = φ(s)− φ(s0)− 〈s − s0,∇φ(s0)〉

The Savage result immediately shows the following

Corollary

If ` is a proper loss then its point-wise regret

B(η, η̂) = L(η, η̂)− L(η)

is a Bregman divergence Bφ with φ = −L

since L(η, η̂) = L(η̂) + (η − η̂)∇L(η̂).
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Integral Representation

Theorem (Schervish, 1989 and others)

Given a proper loss ` : Y× [0, 1] → R there exists a (general)
weight function w(c) such that

`(y , η̂) =

∫ 1

0
`c(y , η̂) w(c) dc

Cost-weighted misclassification losses:

`c(y , η̂) =

{
c y = 0, η̂ ≥ c False Positve

(1− c) y = 1, η̂ < c False Negative

Weight function:
w(c) = −L′′(c)



Integral Representation: Example

`(1, η̂) = − log(η̂)
`(0, η̂) = − log(1− η̂)

=⇒ w(c) =
1

(1− c)c

0.0 0.5 1.0

c

0.0 0.5 1.0

c

0.0 0.5 1.0

c

0.0 0.5 1.0

c

0.0 0.5 1.0

c

0.0 0.5 1.0

c

0.0 0.5 1.0

c

=



Integral Representation: Examples

Square Loss

0.0 0.5 1.0

c

0.0 0.5 1.0

c

“Boosting” Loss

0.0 0.5 1.0

c

0.0 0.5 1.0

c

Asymmetric Loss

0.0 0.5 1.0

c

0.0 0.5 1.0

c



Integral Representation: Proof Sketch

Proof Sketch.

Taylor’s theorem on L gives

L(η) = L(η̂) + (η − η̂)L′(η̂)︸ ︷︷ ︸
L(η,η̂)

+

∫ 1

0
gc(η, η̂) L′′(c) dc

L(η, η̂) = L(η)−
∫ 1

0
gc(η, η̂) L′′(c) dc

`(y , η̂) = L(y) +

∫ 1

0
gc(y , η̂) w(c) dc

where w(c) = −L′′(c) since L(y , η̂) = `(y , η̂) for y ∈ {0, 1}.
Letting `c = gc and recalling L(0) = L(1) = 0 gives result.



Integral Representation: Corollaries

Point-wise Risk

L(η, η̂) = Eη[`(Y , η̂)] =

∫ 1

0
Lc(η, η̂) w(c) dc

where Lc(η, η̂) = Eη[`c(Y , η̂)] = min((1− η)c , (1− c)η).

Point-wise Regret

Bc(η, η̂) =

{
|η − c | min(η, η̂) < c ≤ max(η, η̂)

0 otherwise

and so

B(η, η̂) =

∫ 1

0
Bc(η, η̂)w(c) dc =

∫ max(η,η̂)

min(η,η̂)
|η − c |w(c) dc



Integral Representation: Corollaries

Point-wise Risk

L(η, η̂) = Eη[`(Y , η̂)] =

∫ 1

0
Lc(η, η̂) w(c) dc

where Lc(η, η̂) = Eη[`c(Y , η̂)] = min((1− η)c , (1− c)η).

Point-wise Regret

Bc(η, η̂) =

{
|η − c | min(η, η̂) < c ≤ max(η, η̂)

0 otherwise

and so

B(η, η̂) =

∫ 1

0
Bc(η, η̂) w(c) dc =

∫ max(η,η̂)

min(η,η̂)
|η − c |w(c) dc



Results



Surrogate Regret Bounds: Theorem

Theorem (Theorem 3 in Paper)

Suppose Bc0(η, η̂) = α for a c0 ∈ (0, 1).
Then for any proper loss ` the following tight bound holds:

B(η, η̂) ≥ max{βc0(α), βc0(−α)}

where βc0(α) = B(c0 + α, c0).

Proof.

When η̂ ≤ c0 < η we have Bc0(η, η̂) = η − c0 = α and so
η̂ ≤ c0 < η = c0 + α. Thus,

B(η, η̂) = B(c0 + α, η̂) ≥ B(c0 + α, c0) = βc0(α).

Similarly for η ≤ c0 < η.
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Surrogate Regret Bounds: Corollary

We say a loss is symmetric if, for all η̂ ∈ [0, 1] `(1, η̂) = `(0, 1− η̂).
All margin losses are symmetric.

Corollary

If ` is symmetric and B(η, η̂) = α then

B(η, η̂) ≥ L(1
2)− L(1

2 + α).

Example (Square Loss Bound)

For square loss L(η) = (1− η)η so

B(η, η̂) ≥ 1
4 − [1− (1

2 + B 1
2
(η, η̂))(1

2 + B 1
2
(η, η̂))]

⇐⇒ B 1
2
(η, η̂) ≤

√
B(η, η̂)
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Convex Composite Proper Losses

Theorem (Theorem 5 in Paper)

Let ` be a proper loss and ψ a link. Then the composite risk
L(η, ψ−1(h)) is convex in h when ψ = −L′.

Proof.

Let η̂h = ψ−1(h) and use Savage and inverse function theorems

∂

∂h
L(η, η̂h) = (η − η̂h)

L′′(η̂h)

ψ′(η̂h)

= (η̂h − η)

since ψ′ = −L′′. So

∂2

∂h2
L(η, η̂h) =

1

ψ′(η̂h)
=

1

−L′′(η̂h)
≥ 0

since L is concave.
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Conclusions

Proper losses are the “right” loss for probability estimation and
make for good surrogates for classification.

I Point-wise Bayes risk is easy to analyse

I Rich structure via Savage’s Theorem and integral
representation

The weight functions characterise proper losses.

I Can interpret as which probabilities are important

I Large w(η) means “must estimate η well”

Future work:

I Principled ways of choosing good surrogate losses?

I Better characterisation of convexity for losses?
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Thank You!

Psst! Looking for a Post-Doc position?
Come speak to Bob Williamson or myself after the talk...
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