SURROGATE REGRET BOUNDS FOR PROPER LOSSES

Mark D. Reid The Australian National University Robert C. Williamson The Australian National University & NICTA

Wednesday, 17 June

ICML 2009

Introduction

Aims Losses, Links and Bayes Risks Key Concepts: Fisher Consistency & Taylor's Theorem

Representations

Savage's Theorem Bregman Divergence Weighted Integrals

Results

Surrogate Regret Bounds Convex Composite Losses

Conclusions

Introduction

To better understand loss functions through:

- ► Translation: Make work on risk from other fields ML-friendly
- Unification: Find key concepts underpinning existing results
- Generalisation: Propose generalisation of existing results

To better understand loss functions through:

- Translation: Make work on risk from other fields ML-friendly
- Unification: Find key concepts underpinning existing results
- Generalisation: Propose generalisation of existing results

This approach led to:

- Simpler proofs of some existing results
- A new type of surrogate regret bound:
 - Symmetric and non-symmetric surrogate losses
 - Bounds on cost-weighted misclassification loss (of which 0-1 loss is a special case)

Two elementary concepts underpin all the results in this talk:

FISHER CONSISTENCY

A loss is Fisher consistent for probability estimation if its point-wise risk is minimised by the true point-wise probability.

TAYLOR'S THEOREM - INTEGRAL FORM Given a function $f : [x_0, x] \to \mathbb{R}$ then

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \int_{x_0}^x f'(t)(x - t) dt$$

A loss ℓ assigns a *penalty* $\ell(y, h)$ to a *prediction* $h \in \mathbb{R}$ relative to a *label* y.

A loss ℓ assigns a *penalty* $\ell(y, h)$ to a *prediction* $h \in \mathbb{R}$ relative to a *label* y.

Traditionally, losses in machine learning are margin losses:

$$\ell(\mathbf{y},\mathbf{h})=\phi(\mathbf{y}\mathbf{h})$$

where $y \in \{-1, 1\}$ and $\phi : \mathbb{R} \to \mathbb{R}$.

These are necessarily symmetric in that

$$\ell(-1,h) = \ell(1,-h).$$

Composite Losses

We study a general class of composite losses:

$$\ell^{\psi}(\mathbf{y},h) = \ell(\mathbf{y},\psi^{-1}(h))$$

where $\psi : [0, 1] \to \mathbb{R}$ is an invertible link function that allows predictions $h \in \mathbb{R}$ to be interpreted as probability estimates

$$\hat{\eta} = \psi^{-1}(h).$$

Composite Losses

We study a general class of composite losses:

$$\ell^{\psi}(y,h) = \ell(y,\psi^{-1}(h))$$

where $\psi : [0, 1] \to \mathbb{R}$ is an invertible link function that allows predictions $h \in \mathbb{R}$ to be interpreted as probability estimates

$$\hat{\eta} = \psi^{-1}(h).$$

We focus on the loss for probability estimation rather than the link.

Loss

A loss is a function $\ell:\{0,1\}\times [0,1]\to \mathbb{R}$ such that

 $\ell(0,0) = \ell(1,1) = 0$

which assigns a penalty $\ell(y, \hat{\eta})$ for predicting that the probability that y = 1 is $\hat{\eta} \in [0, 1]$ when the true label is y.

Risk

Aim is to find an *estimator* $\hat{\eta}: \mathcal{X} \to [0,1]$ that minimises the risk w.r.t. some unknown distribution \mathbb{P}

$$\begin{split} \mathbb{L}(Y,\hat{\eta}(X)) &= \mathbb{E}_{(X,Y)\sim\mathbb{P}}[\ell(Y,h(X))] \\ &= \mathbb{E}_{X}[\mathbb{E}_{Y\sim\eta(X)}[\ell(Y,\hat{\eta}(X))]] \end{split}$$

Risk

Aim is to find an *estimator* $\hat{\eta}: \mathfrak{X} \to [0,1]$ that minimises the risk w.r.t. some unknown distribution \mathbb{P}

$$\begin{split} \mathbb{L}(Y, \hat{\eta}(X)) &= \mathbb{E}_{(X,Y) \sim \mathbb{P}}[\ell(Y, h(X))] \\ &= \mathbb{E}_X[\mathbb{E}_{Y \sim \eta(X)}[\ell(Y, \hat{\eta}(X))]] \end{split}$$

POINT-WISE RISK

The point-wise risk of ℓ under $Y\sim\eta$ is

$$L(\eta,\hat{\eta}) = \mathbb{E}_{\mathbf{Y} \sim \eta}[\ell(\mathbf{Y},\hat{\eta})]$$

Risk

Aim is to find an *estimator* $\hat{\eta}: \mathfrak{X} \to [0,1]$ that minimises the risk w.r.t. some unknown distribution \mathbb{P}

$$\begin{split} \mathbb{L}(Y, \hat{\eta}(X)) &= \mathbb{E}_{(X,Y) \sim \mathbb{P}}[\ell(Y, h(X))] \\ &= \mathbb{E}_X[\mathbb{E}_{Y \sim \eta(X)}[\ell(Y, \hat{\eta}(X))]] \end{split}$$

POINT-WISE RISK

The point-wise risk of ℓ under $Y \sim \eta$ is

$$L(\eta,\hat{\eta}) = \mathbb{E}_{\mathbf{Y} \sim \eta}[\ell(\mathbf{Y},\hat{\eta})]$$

Point-wise Bayes Risk

The point-wise Bayes risk is the minimal point-wise risk

$$\underline{L}(\eta) = \inf_{\hat{\eta} \in \mathbb{R}} L(\eta, \hat{\eta})$$

KEY CONCEPTS: FISHER CONSISTENCY

FISHER CONSISTENCY A loss $\ell(y, \hat{\eta})$ is Fisher consistent if

$$L(\eta,\hat{\eta}) = \underline{L}(\eta) = \inf_{\hat{\eta} \in [0,1]} L(\eta,\hat{\eta})$$

KEY CONCEPTS: FISHER CONSISTENCY

FISHER CONSISTENCY A loss $\ell(y, \hat{\eta})$ is Fisher consistent if

$$L(\eta,\hat{\eta}) = \underline{L}(\eta) = \inf_{\hat{\eta} \in [0,1]} L(\eta,\hat{\eta})$$

PROPER LOSS

A loss is said be proper if it is Fisher consistent.

Key Concepts: Fisher Consistency

FISHER CONSISTENCY A loss $\ell(y, \hat{\eta})$ is Fisher consistent if

$$L(\eta, \hat{\eta}) = \underline{L}(\eta) = \inf_{\hat{\eta} \in [0,1]} L(\eta, \hat{\eta})$$

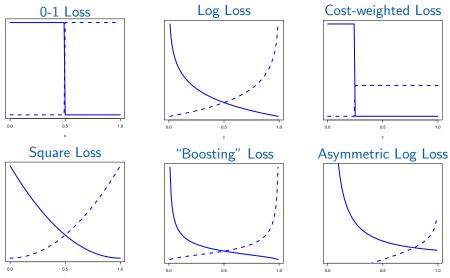
PROPER LOSS

A loss is said be proper if it is Fisher consistent.

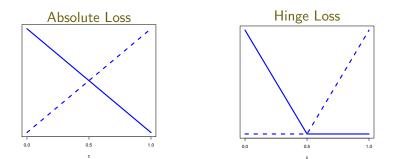
Computing the point-wise Bayes risk of proper losses is easy.

EXAMPLE (SQUARE LOSS) $L(\eta, \hat{\eta}) = (1 - \eta)\hat{\eta}^2 + \eta(1 - \hat{\eta})^2$ so its Bayes risk is $L(\eta) = L(\eta, \eta) = (1 - \eta)\eta$

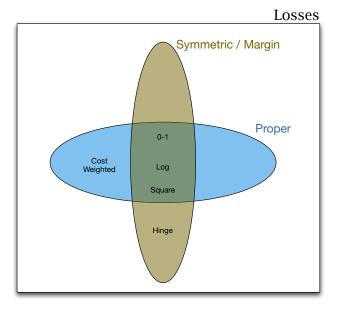
PROPER LOSSES: EXAMPLES



Non-Proper Losses: Examples



Losses



KEY CONCEPTS: TAYLOR'S THEOREM

TAYLOR'S THEOREM - INTEGRAL FORM Given a function $f : [x_0, x] \to \mathbb{R}$ then

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \int_{x_0}^x f'(t)(x - t) dt$$

TAYLOR'S THEOREM - ALTERNATIVE FORM For $x, x_0 \in [a, b]$ and $f : [a, b] \to \mathbb{R}$ suitably differentiable

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \int_a^b g_c(x, x_0) f''(c) dc$$

where

$$g_c(x, x_0) = \begin{cases} (x - c) & x_0 < c \le x \\ (c - x) & x < c \le x_0 \\ 0 & \text{otherwise} \end{cases}$$

Representations

SAVAGE'S THEOREM

THEOREM (SAVAGE, 1971) A loss ℓ is proper iff its point-wise Bayes risk \underline{L} is concave and satisfies

$$L(\eta,\hat{\eta}) = \underline{L}(\hat{\eta}) + (\eta - \hat{\eta})\underline{L}'(\hat{\eta}).$$

SAVAGE'S THEOREM

THEOREM (SAVAGE, 1971)

A loss ℓ is proper iff its point-wise Bayes risk \underline{L} is concave and satisfies

$$L(\eta,\hat{\eta}) = \underline{L}(\hat{\eta}) + (\eta - \hat{\eta})\underline{L}'(\hat{\eta}).$$

PROOF SKETCH.

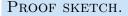
 $\Rightarrow \underline{L}(\eta)$ is infimum of $L(\eta, \hat{\eta})$ which is a lower envelope of lines thus concave, and $\underline{L}'(\eta) = \ell(1, \eta) - \ell(0, \eta)$.

SAVAGE'S THEOREM

THEOREM (SAVAGE, 1971)

A loss ℓ is proper iff its point-wise Bayes risk \underline{L} is concave and satisfies

$$L(\eta,\hat{\eta}) = \underline{L}(\hat{\eta}) + (\eta - \hat{\eta})\underline{L}'(\hat{\eta}).$$

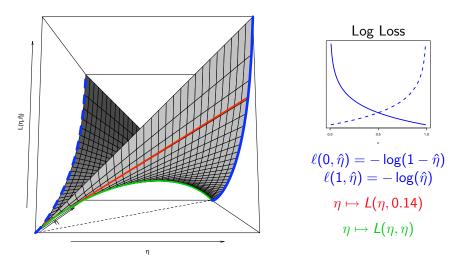


 $\Rightarrow \underline{L}(\eta) \text{ is infimum of } L(\eta, \hat{\eta}) \text{ which is a lower envelope of lines}$ $thus concave, and <math>\underline{L}'(\eta) = \ell(1, \eta) - \ell(0, \eta). \\ \Leftarrow \text{ Taylor expansion of } \Lambda(\eta) \text{ about } \hat{\eta} \text{ gives}$

$$\Lambda(\eta) = \underbrace{\Lambda(\hat{\eta}) + (\eta - \hat{\eta})\Lambda'(\hat{\eta})}_{L(\eta,\hat{\eta})} + \underbrace{\int_{\hat{\eta}}^{\eta} (\eta - c)\Lambda''(c) dc}_{-B(\eta,\hat{\eta})}$$

and since $-\Lambda'' \ge 0$, $L = \Lambda + B$ is min when $\hat{\eta} = \eta$ thus proper.

SAVAGE'S THEOREM: EXAMPLE



DEFINITION (BREGMAN DIVERGENCE) Given a convex function $\phi : \mathbb{R} \to \mathbb{R}$ its Bregman Divergence is $B_{\phi}(s, s_0) = \phi(s) - \phi(s_0) - \langle s - s_0, \nabla \phi(s_0) \rangle$ **DEFINITION** (BREGMAN DIVERGENCE)

Given a convex function $\phi:\mathbb{R}\to\mathbb{R}$ its Bregman Divergence is

$$egin{aligned} B_{\phi}(s,s_0) = \phi(s) - \phi(s_0) - \langle s - s_0,
abla \phi(s_0)
angle \end{aligned}$$

The Savage result immediately shows the following

COROLLARY

If ℓ is a proper loss then its point-wise regret

$$B(\eta,\hat{\eta}) = L(\eta,\hat{\eta}) - \underline{L}(\eta)$$

is a Bregman divergence B_{ϕ} with $\phi = -\underline{L}$

since $L(\eta, \hat{\eta}) = \underline{L}(\hat{\eta}) + (\eta - \hat{\eta})\nabla \underline{L}(\hat{\eta}).$

THEOREM (SCHERVISH, 1989 AND OTHERS) Given a proper loss $\ell : \mathcal{Y} \times [0, 1] \to \mathbb{R}$ there exists a (general) weight function w(c) such that

$$\ell(y,\hat{\eta}) = \int_0^1 \ell_c(y,\hat{\eta}) w(c) \, dc$$

Cost-weighted misclassification losses:

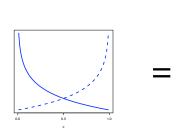
$$\ell_{c}(y,\hat{\eta}) = \begin{cases} c & y = 0, \hat{\eta} \ge c & \text{False Positve} \\ (1-c) & y = 1, \hat{\eta} < c & \text{False Negative} \end{cases}$$

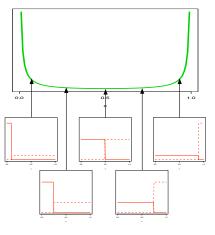
Weight function:

$$w(c)=-\underline{L}''(c)$$

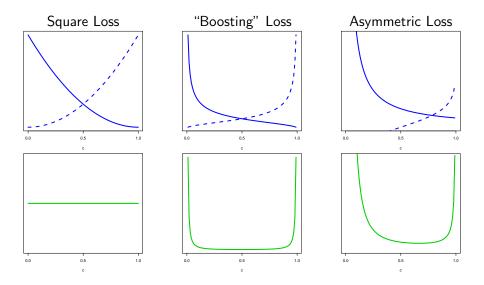
INTEGRAL REPRESENTATION: EXAMPLE

$$\begin{array}{rcl} \ell(1,\hat{\eta}) &=& -\log(\hat{\eta}) \\ \ell(0,\hat{\eta}) &=& -\log(1-\hat{\eta}) \end{array} \implies w(c) = \frac{1}{(1-c)c} \end{array}$$





INTEGRAL REPRESENTATION: EXAMPLES



PROOF SKETCH. Taylor's theorem on <u>L</u> gives

$$\underline{L}(\eta) = \underline{L}(\hat{\eta}) + (\eta - \hat{\eta})\underline{L}'(\hat{\eta}) + \int_0^1 g_c(\eta, \hat{\eta}) \underline{L}''(c) dc$$

$$L(\eta, \hat{\eta}) = \underline{L}(\eta) - \int_0^1 g_c(\eta, \hat{\eta}) \underline{L}''(c) dc$$

$$\ell(y, \hat{\eta}) = \underline{L}(y) + \int_0^1 g_c(y, \hat{\eta}) w(c) dc$$

where $w(c) = -\underline{L}''(c)$ since $L(y, \hat{\eta}) = \ell(y, \hat{\eta})$ for $y \in \{0, 1\}$. Letting $\ell_c = g_c$ and recalling $\underline{L}(0) = \underline{L}(1) = 0$ gives result.

INTEGRAL REPRESENTATION: COROLLARIES

POINT-WISE RISK $L(\eta, \hat{\eta}) = \mathbb{E}_{\eta}[\ell(Y, \hat{\eta})] = \int_{0}^{1} L_{c}(\eta, \hat{\eta}) w(c) dc$ where $L_{c}(\eta, \hat{\eta}) = \mathbb{E}_{\eta}[\ell_{c}(Y, \hat{\eta})] = \min((1 - \eta)c, (1 - c)\eta).$

INTEGRAL REPRESENTATION: COROLLARIES

POINT-WISE RISK

$$L(\eta, \hat{\eta}) = \mathbb{E}_{\eta}[\ell(Y, \hat{\eta})] = \int_{0}^{1} L_{c}(\eta, \hat{\eta}) w(c) dc$$
where $L_{c}(\eta, \hat{\eta}) = \mathbb{E}_{\eta}[\ell_{c}(Y, \hat{\eta})] = \min((1 - \eta)c, (1 - c)\eta).$

POINT-WISE REGRET

$$B_{c}(\eta,\hat{\eta}) = egin{cases} |\eta-c| & \min(\eta,\hat{\eta}) < c \leq \max(\eta,\hat{\eta}) \ 0 & ext{otherwise} \end{cases}$$

and so

$$B(\eta,\hat{\eta}) = \int_0^1 B_c(\eta,\hat{\eta}) w(c) dc = \int_{\min(\eta,\hat{\eta})}^{\max(\eta,\hat{\eta})} |\eta - c| w(c) dc$$

Results

SURROGATE REGRET BOUNDS: THEOREM

THEOREM (THEOREM 3 IN PAPER) Suppose $B_{c_0}(\eta, \hat{\eta}) = \alpha$ for a $c_0 \in (0, 1)$. Then for any proper loss ℓ the following tight bound holds: $B(\eta, \hat{\eta}) \ge \max\{\beta_{c_0}(\alpha), \beta_{c_0}(-\alpha)\}$ where $\beta_{c_0}(\alpha) = B(c_0 + \alpha, c_0)$.

SURROGATE REGRET BOUNDS: THEOREM

THEOREM (THEOREM 3 IN PAPER) Suppose $B_{c_0}(\eta, \hat{\eta}) = \alpha$ for a $c_0 \in (0, 1)$. Then for any proper loss ℓ the following tight bound holds:

 $B(\eta, \hat{\eta}) \ge \max\{\beta_{c_0}(\alpha), \beta_{c_0}(-\alpha)\}$

where $\beta_{c_0}(\alpha) = B(c_0 + \alpha, c_0)$.

Proof.

When $\hat{\eta} \leq c_0 < \eta$ we have $B_{c_0}(\eta, \hat{\eta}) = \eta - c_0 = \alpha$ and so $\hat{\eta} \leq c_0 < \eta = c_0 + \alpha$. Thus,

$$B(\eta,\hat{\eta}) = B(c_0 + \alpha,\hat{\eta}) \ge B(c_0 + \alpha, c_0) = \beta_{c_0}(\alpha).$$

Similarly for $\eta \leq c_0 < \eta$.

SURROGATE REGRET BOUNDS: COROLLARY

We say a loss is symmetric if, for all $\hat{\eta} \in [0, 1]$ $\ell(1, \hat{\eta}) = \ell(0, 1 - \hat{\eta})$. All margin losses are symmetric.

COROLLARY

If
$$\ell$$
 is symmetric and $B(\eta, \hat{\eta}) = \alpha$ then

$$B(\eta, \hat{\eta}) \geq \underline{L}(\frac{1}{2}) - \underline{L}(\frac{1}{2} + \alpha).$$

SURROGATE REGRET BOUNDS: COROLLARY

We say a loss is symmetric if, for all $\hat{\eta} \in [0, 1]$ $\ell(1, \hat{\eta}) = \ell(0, 1 - \hat{\eta})$. All margin losses are symmetric.

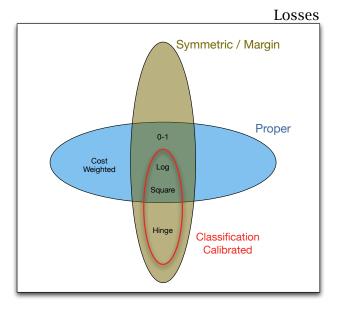
COROLLARY

If
$$\ell$$
 is symmetric and $B(\eta, \hat{\eta}) = \alpha$ then

$$B(\eta, \hat{\eta}) \geq \underline{L}(\frac{1}{2}) - \underline{L}(\frac{1}{2} + \alpha).$$

EXAMPLE (SQUARE LOSS BOUND) For square loss $\underline{L}(\eta) = (1 - \eta)\eta$ so $B(\eta, \hat{\eta}) \geq \frac{1}{4} - [1 - (\frac{1}{2} + B_{\frac{1}{2}}(\eta, \hat{\eta}))(\frac{1}{2} + B_{\frac{1}{2}}(\eta, \hat{\eta}))]$ $\iff B_{\frac{1}{2}}(\eta, \hat{\eta}) \leq \sqrt{B(\eta, \hat{\eta})}$

Losses



Convex Composite Proper Losses

THEOREM (THEOREM 5 IN PAPER)

Let ℓ be a proper loss and ψ a link. Then the composite risk $L(\eta, \psi^{-1}(h))$ is convex in h when $\psi = -\underline{L}'$.

Convex Composite Proper Losses

THEOREM (THEOREM 5 IN PAPER)

Let ℓ be a proper loss and ψ a link. Then the composite risk $L(\eta, \psi^{-1}(h))$ is convex in h when $\psi = -\underline{L}'$.

PROOF.

Let $\hat{\eta}_h = \psi^{-1}(h)$ and use Savage and inverse function theorems

$$\frac{\partial}{\partial h} \mathcal{L}(\eta, \hat{\eta}_h) = (\eta - \hat{\eta}_h) \frac{\underline{L}''(\hat{\eta}_h)}{\psi'(\hat{\eta}_h)}$$
$$= (\hat{\eta}_h - \eta)$$

since $\psi' = -\underline{L}''$. So

$$\frac{\partial^2}{\partial h^2}L(\eta,\hat{\eta}_h) = \frac{1}{\psi'(\hat{\eta}_h)} = \frac{1}{-\underline{L}''(\hat{\eta}_h)} \ge 0$$

since \underline{L} is concave.

Conclusions

Proper losses are the "right" loss for probability estimation and make for good surrogates for classification.

- Point-wise Bayes risk is easy to analyse
- Rich structure via Savage's Theorem and integral representation

Proper losses are the "right" loss for probability estimation and make for good surrogates for classification.

- Point-wise Bayes risk is easy to analyse
- Rich structure via Savage's Theorem and integral representation

The weight functions characterise proper losses.

- Can interpret as which probabilities are important
- Large $w(\eta)$ means "must estimate η well"

Proper losses are the "right" loss for probability estimation and make for good surrogates for classification.

- Point-wise Bayes risk is easy to analyse
- Rich structure via Savage's Theorem and integral representation

The weight functions characterise proper losses.

- Can interpret as which probabilities are important
- Large $w(\eta)$ means "must estimate η well"

Future work:

- Principled ways of choosing good surrogate losses?
- Better characterisation of convexity for losses?

Thank You!

Psst! Looking for a Post-Doc position? Come speak to Bob Williamson or myself after the talk...