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Polyhedral Outer Approximations with Application to Natural Language Parsing

In a Nutshell

Structured prediction: models interdependence among outputs
[Lafferty et al., 2001, Taskar et al., 2003, Tsochantaridis et al., 2004]

Exact inference only tractable w/ strong locality assumptions

Often: better (non-local) models with approximate inference
Sometimes outputs are globally constrained (matchings,
permutations, spanning trees)

How does approximate inference affect learning?
[Kulesza and Pereira, 2007, Finley and Joachims, 2008]

This paper: LP-relaxed inference and max-margin learning

Guarantees for algorithmic separability
New interpretation: balancing accuracy and computational cost
Learning bounds via polyhedral characterizations

Application: dependency parsing with rich features
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Example: Dependency Parsing

Let x be a sentence in X , Σ∗

Dependency trees: a syntactic representation that captures
lexical relationships
Let Y(x) be the set of legal dependency trees of x

Each y ∈ Y(x) is a spanning tree of the complete digraph
linking all word pairs

We want to learn a parser h : X → Y, where Y =
⋃

x∈X Y(x)

This is a structured classification problem involving non-local
interactions among output variables
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Structured Classification and LP

Notation

Input set X

Output set Y
Labeled dataset L , {(x1, y1), . . . , (xm, ym)} ⊆ X × Y

drawn i.i.d. from P(X ,Y )

Loss function ` : Y × Y → R+

Goal: learn h : X → Y with small expected loss E`(h(X ); Y )

Here: linear classifiers

hw(x) = arg max
y∈Y

w>f(x , y)

Hypothesis space H , {hw | w ∈ W}, W ⊆ Rd convex
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Structured Classification and LP

Decomposition Into Parts

Assumption: each y ∈ Y decomposes into parts

Example: clique assignments in a Markov network
Example: arcs in a dependency parse tree
Example: k-tuples of arcs in a dependency tree (up to some k)

Define a set of parts R
Replace y by an indicator vector z , (zr )r∈R with
zr , I(r ∈ y)

Assumption: features decompose over the parts

f(x , y) ,
∑
r∈y

fr (x) =
∑
r∈R

zr fr (x) = F(x)z,

F(x) , (fr (x))r∈R is a feature matrix (d-by-|R|)
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Structured Classification and LP

Inference

Minkowski-Weyl theorem: there is a representation

Z = {z ∈ Rn | Az ≤ b}

where A is a p-by-n matrix and b is a vector in Rp (p, n ∈ N)

Inference becomes an LP [Taskar et al., 2004]:

max
y∈Y

w>f(x , y) = max
z∈V (Z)

w>F(x)z

= max
z∈Z

s>z with s = F(x)>w

Are we done?

No: Finding A and b is problem dependent.

In general p = O(exp(n)) (exponentially many constraints)
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Structured Classification and LP

LP-Relaxed Inference and Outer Polytope

Often: a concise representation of an outer polytope Z̄ ⊇ Z
such that Z̄ ∩ Zn = V (Z)

max
z∈Z

s>z = max
z∈Z̄,z∈Zn

s>z

≤ max
z∈Z̄

s>z
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Structured Classification and LP

Learning

What about learning?

Assumption: The loss function also decomposes over the parts

Example: Hamming loss

`(y ′; y) ,
∑
r∈R

(
I(r ∈ y ′)I(r /∈ y) + I(r /∈ y ′)I(r ∈ y)

)
= ‖z′ − z‖1

= p>z′ + q where p , 1− 2z and q , 1>z

Hamming loss is an affine function of z
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Structured Classification and LP

Learning

Structured SVM:

min
w

λ

2
‖w‖2 +

1

m

m∑
t=1

rt(w)

where the slack rt(w) is the solution of the loss-augmented
inference (LAI) problem

rt(w) = max
y ′
t∈Y

w> f(xt , y
′
t)︸ ︷︷ ︸

Ftz′
t

−w> f(xt , yt)︸ ︷︷ ︸
Ftzt

+ `(y ′t ; yt)︸ ︷︷ ︸
ptz′

t+qt

=

(
max
z′
t∈Z

(F>t w + pt)>z′t

)
− (F>t w)>zt + qt

Also an LP.
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Learning with LP-Relaxed Inference

Exact and Relaxed Structured SVMs

Structured SVM (exact):

min
w

λ

2
‖w‖2 +

1

m

m∑
t=1

rt(w)

where the slack rt(w) is the solution of the exact LAI problem

rt(w) =

(
max
z′
t∈Z

(F>t w + pt)>z′t

)
− (F>t w)>zt + qt

Relax.
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Exact and Relaxed Structured SVMs
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≥ `(hw(xt), zt) upper bounds the true loss.

Relax.
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Learning with LP-Relaxed Inference

Algorithmic Separability

LP relaxed inference augments the output space: makes up
artificial negative examples

Equivalently: an approximate algorithm Aw which sometimes
returns fractional solutions

Some definitions [Kulesza and Pereira, 2007]

L is separable if ∃w s.t. hw classifies all data correctly
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Typical goal: minimize expected loss E`(h(X ),Y )

Structured prediction: computational cost is also important

Let `c(h, x) be the cost of computing h(x)

Let E`c(h,X ) be the average computational cost of h

Alternative goal: minimize E`(h(X ),Y )︸ ︷︷ ︸
expected loss of h

+η · E`c(h,X )︸ ︷︷ ︸
average cost of h
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Learning with LP-Relaxed Inference

Nice Score Vectors and Low-Cost Hypotheses

A “nice” score vector s is one
which hits an integer vertex

At test time: s ∼ P(F(X )>w) is a
r.v. that depends on X (filtered by
the parameters w)

A low-cost hypothesis hw is one
which yields P(F(X )>w) with large
mass on “nice” score vectors

Idea: Approximate computational cost by relaxation gap:
E`c(hw,X ) ≈ E`(hw(X ), h̄w(X ))

Most ILP solvers (branch-and-bound, Gomory’s cuts) converge faster
as this gap is smaller
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Balancing Accuracy and Runtime

Add a empirical relaxation gap term to our learning objective:
1
m

∑m
t=1(r̄t(w)− rt(w))

The learning problem becomes

min
w

λ

2
‖w‖2 +

1− η
m

m∑
t=1

rt(w)︸ ︷︷ ︸
Exact LAI

+
η

m

m∑
t=1

r̄t(w)︸ ︷︷ ︸
Relaxed LAI

.

In the paper: a stochastic adaptation of the online
subgradient algorithm [Ratliff et al., 2006]

A PAC bound with respect to the best exact learner

It measures the impact of the approximation in learning
Previous bounds were in terms of the approximate learner
[Kulesza and Pereira, 2007]
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Dependency parsing for seven languages
Danish, Dutch, Portuguese, Slovene, Swedish, Turkish, English

Exact inference is efficient with a arc-factored model

Find a maximal spanning tree [McDonald et al., 2005]

Beyond that: NP-hard [McDonald and Satta, 2007]

Our model: a ILP formulation with non-arc-factored features

Models grandparents/siblings interactions
Models valency and nonprojective arcs
Only O(n3) variables and constraints
More details: [Martins et al., 2009]
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Two different decoders at test time:

Exact decoder (solve an ILP)
Approximate decoder (solve the relaxed LP; if the solution is
fractional, round it in polynomial time by finding a maximal
spanning tree on the reweighted graph)

Strong baselines:

[MP06] — approximate second-order parser
[McDonald and Pereira, 2006]

[MDSX08] — stacked parser [Martins et al., 2008]
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As η increases, the model
learns to avoid fractional
solutions

Runtime does correlate with
the relaxation gap

Yet the approximate decoder
is significantly faster

Our full model: Same order
of magnitude as the
baselines (≈ 0.632 sec.)



Polyhedral Outer Approximations with Application to Natural Language Parsing

Experiments

Experiments

Experiment #2: does η really penalize computational cost?
Slovene dataset (with a reduced set of features)

As η increases, the model
learns to avoid fractional
solutions

Runtime does correlate with
the relaxation gap

Yet the approximate decoder
is significantly faster

Our full model: Same order
of magnitude as the
baselines (≈ 0.632 sec.)



Polyhedral Outer Approximations with Application to Natural Language Parsing

Experiments

Experiments

Experiment #2: does η really penalize computational cost?
Slovene dataset (with a reduced set of features)

As η increases, the model
learns to avoid fractional
solutions

Runtime does correlate with
the relaxation gap

Yet the approximate decoder
is significantly faster

Our full model: Same order
of magnitude as the
baselines (≈ 0.632 sec.)



Polyhedral Outer Approximations with Application to Natural Language Parsing

Experiments

Experiments

Experiment #2: does η really penalize computational cost?
Slovene dataset (with a reduced set of features)

As η increases, the model
learns to avoid fractional
solutions

Runtime does correlate with
the relaxation gap

Yet the approximate decoder
is significantly faster

Our full model: Same order
of magnitude as the
baselines (≈ 0.632 sec.)



Polyhedral Outer Approximations with Application to Natural Language Parsing

Experiments

Experiments

Experiment #2: does η really penalize computational cost?
Slovene dataset (with a reduced set of features)

As η increases, the model
learns to avoid fractional
solutions

Runtime does correlate with
the relaxation gap

Yet the approximate decoder
is significantly faster

Our full model: Same order
of magnitude as the
baselines (≈ 0.632 sec.)



Polyhedral Outer Approximations with Application to Natural Language Parsing

Conclusion

Outline

1 Structured Classification and LP

2 Learning with LP-Relaxed Inference

3 Experiments

4 Conclusion



Polyhedral Outer Approximations with Application to Natural Language Parsing

Conclusion

Conclusions and Future Work

We studied the impact of LP relaxed inference in max-margin
learning

We established sufficient conditions for algorithmic separability

As a by-product: a new learning algorithm that penalizes
computational cost

We demonstrated the effectiveness of these techniques in
dependency parsing with non-arc-factored features

Future work: polyhedral characterizations that guarantee
tighter bounds

Conditions for vanishing relaxation gap in online learning

Connections with regularization



Polyhedral Outer Approximations with Application to Natural Language Parsing

Conclusion

Conclusions and Future Work

We studied the impact of LP relaxed inference in max-margin
learning

We established sufficient conditions for algorithmic separability

As a by-product: a new learning algorithm that penalizes
computational cost

We demonstrated the effectiveness of these techniques in
dependency parsing with non-arc-factored features

Future work: polyhedral characterizations that guarantee
tighter bounds

Conditions for vanishing relaxation gap in online learning

Connections with regularization



Polyhedral Outer Approximations with Application to Natural Language Parsing

Conclusion

Conclusions and Future Work

We studied the impact of LP relaxed inference in max-margin
learning

We established sufficient conditions for algorithmic separability

As a by-product: a new learning algorithm that penalizes
computational cost

We demonstrated the effectiveness of these techniques in
dependency parsing with non-arc-factored features

Future work: polyhedral characterizations that guarantee
tighter bounds

Conditions for vanishing relaxation gap in online learning

Connections with regularization



Polyhedral Outer Approximations with Application to Natural Language Parsing

Conclusion

Conclusions and Future Work

We studied the impact of LP relaxed inference in max-margin
learning

We established sufficient conditions for algorithmic separability

As a by-product: a new learning algorithm that penalizes
computational cost

We demonstrated the effectiveness of these techniques in
dependency parsing with non-arc-factored features

Future work: polyhedral characterizations that guarantee
tighter bounds

Conditions for vanishing relaxation gap in online learning

Connections with regularization



Polyhedral Outer Approximations with Application to Natural Language Parsing

Conclusion

Conclusions and Future Work

We studied the impact of LP relaxed inference in max-margin
learning

We established sufficient conditions for algorithmic separability

As a by-product: a new learning algorithm that penalizes
computational cost

We demonstrated the effectiveness of these techniques in
dependency parsing with non-arc-factored features

Future work: polyhedral characterizations that guarantee
tighter bounds

Conditions for vanishing relaxation gap in online learning

Connections with regularization



Polyhedral Outer Approximations with Application to Natural Language Parsing

Conclusion

Conclusions and Future Work

We studied the impact of LP relaxed inference in max-margin
learning

We established sufficient conditions for algorithmic separability

As a by-product: a new learning algorithm that penalizes
computational cost

We demonstrated the effectiveness of these techniques in
dependency parsing with non-arc-factored features

Future work: polyhedral characterizations that guarantee
tighter bounds

Conditions for vanishing relaxation gap in online learning

Connections with regularization



Polyhedral Outer Approximations with Application to Natural Language Parsing

Conclusion

Conclusions and Future Work

We studied the impact of LP relaxed inference in max-margin
learning

We established sufficient conditions for algorithmic separability

As a by-product: a new learning algorithm that penalizes
computational cost

We demonstrated the effectiveness of these techniques in
dependency parsing with non-arc-factored features

Future work: polyhedral characterizations that guarantee
tighter bounds

Conditions for vanishing relaxation gap in online learning

Connections with regularization



Polyhedral Outer Approximations with Application to Natural Language Parsing

References

References I

Chu, Y. J. and Liu, T. H. (1965).

On the shortest arborescence of a directed graph.
Science Sinica, 14:1396–1400.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2006).

Online Passive-Aggressive Algorithms.
JMLR, 7:551–585.

Edmonds, J. (1967).

Optimum branchings.
Journal of Research of the National Bureau of Standards, 71B:233–240.

Eisner, J. (1996).

Three new probabilistic models for dependency parsing: An exploration.
In COLING.

Finley, T. and Joachims, T. (2008).

Training structural SVMs when exact inference is intractable.
In ICML.

Kulesza, A. and Pereira, F. (2007).

Structured Learning with Approximate Inference.
NIPS.

Lafferty, J., McCallum, A., and Pereira, F. (2001).

Conditional random fields: Probabilistic models for segmenting and labeling sequence data.
In Proc. of ICML.



Polyhedral Outer Approximations with Application to Natural Language Parsing

References

References II

Magnanti, T. and Wolsey, L. (1994).

Optimal Trees.
Technical Report 290-94, Massachusetts Institute of Technology, Operations Research Center.

Martins, A. F. T., Das, D., Smith, N. A., and Xing, E. P. (2008).

Stacking dependency parsers.
In Proc. of EMNLP.

Martins, A. F. T., Smith, N. A., and Xing, E. P. (2009).

Concise integer linear programming formulations for dependency parsing.
In Proc. of ACL-IJCNLP.

McDonald, R. and Satta, G. (2007).

On the complexity of non-projective data-driven dependency parsing.
In Proc. of IWPT.

McDonald, R. T., Pereira, F., Ribarov, K., and Hajic, J. (2005).

Non-projective dependency parsing using spanning tree algorithms.
In Proc. of HLT-EMNLP.

McDonald, R. T. and Pereira, F. C. N. (2006).

Online learning of approximate dependency parsing algorithms.
In Proc. of EACL.

Ratliff, N., Bagnell, J., and Zinkevich, M. (2006).

Subgradient methods for maximum margin structured learning.
In ICML Workshop on Learning in Structured Outputs Spaces.



Polyhedral Outer Approximations with Application to Natural Language Parsing

References

References III

Smith, D. A. and Eisner, J. (2008).

Dependency parsing by belief propagation.
In Proc. of EMNLP.

Taskar, B., Chatalbashev, V., and Koller, D. (2004).

Learning associative Markov networks.
In ICML. ACM New York, NY, USA.

Taskar, B., Guestrin, C., and Koller, D. (2003).

Max-margin markov networks.
In NIPS.

Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y. (2004).

Support vector machine learning for interdependent and structured output spaces.
In ICML. ACM New York, NY, USA.



Polyhedral Outer Approximations with Application to Natural Language Parsing

Extra Slides

Balancing Accuracy and Runtime

Stochastic Online Subgradient Algorithm (based on
[Ratliff et al., 2006])

Input: L, 〈ηt〉t , learning rate sequence 〈αt〉t
Initialize w1 ← 0
for t = 1 to m = |L| do

Pick σt ∼ Bernoulli(ηt)
if σt = 1 then

Solve relaxed LAI, ẑt←arg maxz̄′t∈Z̄ w>t Ft(z̄′t − zt) + `(z̄′t ; zt)
else

Solve exact LAI, ẑt ← arg maxz′t∈Z w>t Ft(z′t − zt) + `(z′t ; zt)
end if
Compute the subgradient gt ← λwt + Ft(ẑt − zt)
Project and update wt+1 ← ProjW (wt − αtgt)

end for
Return the averaged model ŵ← 1

m

∑m
t=1 wt .
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Generalization Bound

Proposition

Setting αt = 1/(λt), λ = Θ

(√
1+log m

m

)
and ηt = Θ(t−1/2):

E`(hŵ(X ),Y ) ≤ 1

m

m∑
t=1

rt(w∗) +
L · o(m)

m
+ O

(√
1

m
ln

1

δ

)

holds with probability ≥ 1− δ.

Remark: The bound is in terms of what could be achieved
with the best exact learner

It measures the impact of the approximation in learning

Previous bounds were in terms of the approximate learner
[Kulesza and Pereira, 2007]
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