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Multiple Outputs

“Multiple outputs do not affect each others least squares estimates”

Hastie, Tibshirani, Friedman (2001)

We will study cases, where this statement is not applicable!
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Hierarchical Bayes, inductive transfer learning,  multi-label prediction, multitask 
learning, random-effects models, random parameter models, mixed models, 
mixed effect models,  nested models, multilevel models, hierarchical linear 
models, generalized mixed models, collaborative filtering,  canonical correlation 
analysis, maximal covariance regression, partial least squares, multivariate 
regression, structured output prediction (and probably many more things I am 
not even aware of)

� An attempt to provide a view
� With a Bayesian flavor but not strictly Bayes

I.   Hierarchical Bayes - Mixed Models
� A: Problem Settings and Simple Solutions
� B: Hierarchical Bayes - Mixed Models
� C: Nonparametric Hierarchical Bayes

II.  Projection Methods
III. Multivariate Models and Structured Outputs
IV. Link Prediction / Relationship Prediction

Overview
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A Classical Generic Supervised Learning Task
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Data matrix

� Rows: data points
� Columns:

� Input vector x
� Output scalar  y
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A New Generic Supervised Learning Problem?
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� Rows: data points
� Columns: 

� Input vector x
� Output vector y

Perspective of the 
presentation:

� This is the data, 
what should one 
do?  
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I: Hierarchical Bayes - Mixed models
II. Projection approaches
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� Each output dimension (situation) is trained independently given a 
transformation (resp. given a prior distribution) that is found using all data

� Hierarchical Bayes: statistical strength between multiple outputs is shared 
by common parameters in the prior distribution

� Projection Methods: The input is mapped to a lower-dimensional space that 
was found using all data

� Applicable when one can assume that the functional dependencies for all 
outputs (situations) come from the same (simple) family of functions   
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Data has been collected and models have been 
trained for M plants: 
� we want to generalize to plant M+1 where either 

no or only little data is available 
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� Data for length of stay prediction has been collected 
for patients in M hospitals: 

� can we generalize to patients in hospital M+1
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Length of Stay Prediction
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of patient 1

Properties 
of patient N

Length of stay
prediction 
for hospital 1 

Length of stay 
prediction 
for hospital M

� Naturally, a patient has typically 
been only in one hospital: 
technically, for each input only one 
output might be available

� Thus in many Hierarchical 
Bayesian setting, the algorithms 
need to be able to deal with (an 
extreme case of) missing output 
information 

X Y
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III. Multivariate Prediction
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After training 
� we obtain one global model
� dependencies between outputs are modeled
� statistical strength between multiple outputs is shared since 

parameters are sensitive to all outputs
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� Decision Support: For a given 
patient many procedures are 
possible

� Recommendation: For a given 
user, many items might be of 
interest

� Semantic Web: For a given text, 
many annotations are possible

Examples: Multivariate Prediction

For a given object, several output variables / labels are measured: is 
it easier to predict M things than one?

Users

Items

Link Matrix
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Structured Output Prediction
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� Dependency structure between the outputs is known and simplifies
model

� Parameter sharing (invariance assumption): data efficiency
� Applicable when structural dependencies between outputs are 

known
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Example:  Named Entity Recognition with 
Conditional Random Fields
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Entity for word 1 

Entity for word M

� Neighborhood structure between 
outputs

� Note that after training we obtain a 
probabilistic score for a joint 
configuration of x and y so we 
don’t really predict y from x

� Clique:  
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Parameters Sharing

� Often one assumes some invariance, e.g., 

� Each clique uses the same feature functions
� Data efficiency
� Can handle sequences with varying lengths
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Example: Image Restoration 
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Example: Social Network Analysis 

� Nodes are actors
� Typical task: classification of actors based on actor attributes and based 

on the class labels of neighboring actors (collective classification)
� New: 

� Often  there is only one social network available: then the social 
network corresponds to only one row (the network is one data 
point) and learning relies on parameter sharing

� A node has a varying number of neighbors: aggregation
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Protein Structure Prediction

ix

AVITGACERDLQCG
KGTCCAVSLWIKSV
RVCTPVGTSGEDCH
PASHKIPFSGQRMH
HTCPCAPNLACVQT
SPKKFKCLSK

,*iy

Taskar,  Chatalbashev, Koller and Guestrin (2006)

score
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Natural Language Parsing

The screen was 
a sea of red

ix ,*iy

Taskar,  Chatalbashev, Koller and Guestrin (2006)

� Mapping of sentence to a parse tree
� Features count how many times a weighted grammar rule occurs on 

valid parse trees

score
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IV. Link Prediction / Relationship Prediction
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� describes the link (relationship) between row entity i and column 
entity j

� Row objects and column objects might of same type or of different types
� Row and column objects both might have attributes
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Key Message of the Presentation

� Prediction accuracy is improved in models with several response 
variables if some or all model parameters are sensitive to all outputs

� Then, in learning, some or all parameter estimates benefit from the 
multiple outputs
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I. Hierarchical Bayes

�Predicting the same thing (patient’s length of stay) 
but in different situations (different hospitals)
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I.A. 
Problem Settings and Simple Solutions
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� Data is collected for M different situations (entities/sites/tasks) and the 
goal is to learn  predictive models

� Can data from other situations help to improve the prediction of

both               and for a new situation                   ? 

� For simplicity, we consider models linear in the parameters of the form

Typically we only have access to 

Problem Setting
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Simple Solution: One Global Model

� We learn one model with all data: Fruits, not apple and oranges
� Data efficient solution

� Problems: ignores differences in different situations
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Simple Solution: Separate Models

� A model for each situation is trained solely on its own data

� Problem: no sharing of statistical strength 
(but sometimes the correct solution)

� Only one output dimension contributes to parameter estimates

∑ =
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Simple Solution: Situation as Input

� The situation is just another set of inputs to the model, e.g., in form of 
indicator variables

� Data efficient
� Problem: sometimes suitable but the influence of the situation might be 

quite complex 

),( jf ux
T

jjj u )0,0,0,1,,0,0( , LL ==u
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I.B. 
Hierarchical Bayes / Mixed Models
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New Situation with Few Data Points

� Assume a few data points local in input space

x

)(ˆ xfnew ),0(~ 2INnew αw

10φ
100φ
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Motivation for Hierarchical Bayes

� Looking at other models
another solution becomes more likely

)(ˆ xf j

x

)(ˆ xf j
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Parameter Distributions

10φ 100φ

� The parameters for the 
different models might 
form again a Gaussian 
distribution 

),(~| Σmw Nnew D

100,jw

10,jw

m
• Yu, Tresp, Schwaighofer (2005)

• Raina, Ng, Koller (2006) 
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� A new model sees the “learned” prior

� With a Gaussian (learned) prior we obtain a Gaussian process with 
mean function and covariance kernel given by

Learned Prior
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Learned Prior in Function Space

10φ 100φ
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ix kx

� So we got what we wanted: the new function is guided by the 
previously learned functions
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� We can decompose 
Singular Value Decomposition (SVD): 

� And obtain:

� From this view point the new model has a Gaussian parameter 
distribution with identity covariance matrix and with new learned 
basis functions formed as linear combinations of the original basis 
functions:

Covariance and Basis Functions

TTVVDD=Σ
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Architecture: Hierarchical Bayesian Modeling
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outputs
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Technical Details: EM Updates

� In typical applications noisy measurements for the different situations 
are available. The design matrix for situation j:           inverse Wishart: 

� Complete data likelihood
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Definition of Inverse Wishart
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Marginalization consistent

A. P. Dawid. Some matrix-variate distribution theory: Notational considerations
and a Bayesian application. Biometrika, 68(1), 1981 



Page 38

Learned Basis Functions

� The key benefit in Hierarchical Bayesian modeling for linear systems is 
that common basis functions are learned that are used for all outputs

� Let’s briefly look at two solutions that also lead to a set of shared basis 
functions 

� Empirical basis functions
� Basis functions derived from a SVD
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Empirical Basis Functions

� After training
(regression with little noise)

� Thus why not set 

� The learned basis functions are given by the output data
� Disadvantage: different situations do not benefit from one another
� Still, we can make predictions based on the estimated K
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Learned Basis Functions Based on SVD

� With SVD

� We can decompose:

� In               we have                        for

� Thus another sensible set of learned basis functions might be defined by

� Since here, the singular vectors (columns of U) are calculated based on all 
data, statistical strength is shared 

� This might explain the great success of matrix decomposition methods in 
collaborative filtering (e.g., in the Netflix competition)
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Comments

� Advantages of Hierarchical Bayes:
� Inclusion of prior knowledge by defining the basis functions
� Generalization to new inputs
� No problems with missing outputs

� Alternatively: in Hierarchical Bayes inference is often performed via 
Gibbs sampling or other approximate methods such as variational
learning (see, e.g.,  Latent Dirichlet Allocation, LDA) 

(Blei, Ng, Jordan, 2003)

� Naturally  Hierarchical Bayes is also applicable  beyond linear models

� Gelman, Carlin, Stern and Rubin (2003) provide a thorough discussion of Hierarchical 
Bayesian models
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Three Phases in HB modeling

� First Phase: With no data yet available the model for a new situation 
follows the prior (the mean function)

� Second Phase: With some data available for a new situation,  a model 
follows more closely a previous model that fits those data well

� Finally: With increasing data available, the model becomes 
independent of the learned prior

� Dimensional reduction:  Derived basis functions 

with a small                 are ignored
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When Hastie’s Statement is Applicable

� If the hyper parameters (in our case:           ) are known a prior, i.e., 
they represent the empirical parameter distribution, then all output 
functions are independent
� Or: if output functions have no common prior distribution (predicting 

apples and oranges)

� In contrast, if the prior is learned then all measurements influence all 
predictions!

Σ,m
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Frequentist Equivalent: Mixed Models

� Known: 

� (unknown but) Fixed effect: 

� Random effect: 

� Special case: 

� regression model with 
random coefficients

� Relationship to HB-model: 

jjjjj Zy ε++Φ= bm*,
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m

jb

jj Z,Φ
� New: correlated 

contributions that cannot 
be explained by the 
inputs (“noise”)

� Collaborative effect!

� MM: As Bayesian as a 
frequentist will ever get

� HB: as frequentist as a 
Bayesian will ever get
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Non-probabilistic Equivalent: Regularized Multi-task Learning 
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Evgeniou, Micchelli, Pontil (2006)

• Assume an “isotropic” covariance

•2-norm constraint

• Learn the shared mean of linear weights

• Convex optimization problem
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Non-probabilistic Equivalent: Convex Multi-task Feat ure Learning
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� Convex optimization 
� L1-L2 norm
� Argyriou, Evgeniou, Pontil (2006)

Assume a shared diagonal covariance
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Lead to a jointly sparse result
(select features subset for all 

tasks)

� A similar model via an extension of relevant vector machine, by J. Zhang (2005)
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� As already discussed, a system of fixed basis functions and 
Gaussian weight prior

� … is technically equivalent to a Gaussian process with 
covariance

and mean function

� Thus: 
� as parametric HB boils down to learning  

, 
� GP-HB boils down to learning 

Gaussian Process Hierarchical Bayes (GP-HB)
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Comparing Representations and Kernels

Hierarchical
Bayes

SVD

Empirial

Y TYY
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K
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K
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Approach               Basis fcts.           Gram Matrix

� Based on our discussion we can derive the following kernels
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GP-HB: Learning in Function Space

� Now we consider GP-HB in function space
� A prior for mean and covariance kernel is defined for a finite set of 

points (typically the training data and some test points)) 

� MAP estimates for kernel and mean are calculated using EM 
equations 

� is the base kernel.           is the respective Gram matrix. 
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EM Learning for GP-HB

� In typical applications noisy measurements for the different situations 
are available (for missing data: simply set noise variance to infinity) 

� Complete data likelihood
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Induction: Generalizing to New Inputs

� To generalize to new inputs (induction) one can use 
approximations. The simplest one, based on the Nyström
approximation, gives

� Schwaighofer, Tresp, Yu (2004) 
� Yu, Tresp, Schwaighofer (2005)

� Lawrence and Platt (2004): similar approach but without priors on mean and kernel

),(),(),( 1
ki

T
ki xKxxxk ⋅⋅= − κκ



Page 52

Induction: Generalizing to New Inputs

� To generalize to new inputs (induction) one can use different 
approximations

� Schwaighofer, Tresp, Yu (2004) 
� Yu, Tresp, Schwaighofer (2005)

� Lawrence and Platt (2004): similar approach but without priors on mean and kernel
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• 10000 documents with a total of 81 labels (situations) with TFIDF features; On average each document 
has  3.96 labels.

• The test set contains 9700 examples;  All: evaluation on all the test points. Partially Labeled: each test 
document with at least one label in some category.

Predicting Reuter’s labels
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Fast Implementation of GP-HB

• Straightforward of the EM approach on Netflix will take thousands of hours per 
iteration

• Fast implementation plus model simplification leads to 5h/iterations
• VB: variational Bayes matrix factorization. SVD: SVD for sparse matrices. BPMF: 

Bayesian Probabilistic Matrix Factorization. NSVD: Max Margin Matrix 
Factorization. NPCA: nonparametric PCA (GP-HB) 

• Yu, Zhu, Lafferty, Gong (2009)
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I.C. 
Nonparametric Hierarchical Bayes

�The prior needs to be quite expressive!
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)( ∞→N

prior

w

Prior Distribution

MLw

Posterior Distribution

Set of max. likl. 
estimates; 

Set of max. likl. 
estimates where a 
nonparametric 
distribution might be 
appropriate

A Problem with Low-dimensional  HB Approaches

w

w w
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Another View

10φ 100φ

� A latent mixture model for 
the distribution of the 
parameters

� Latent variable (clustering) 
model of functions, not 
data points! 

� Multi-modal learned prior 
distribution

100,jw

10,jw
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(Soft) Grouping of Variables or Functions
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� Colors: cluster assignment (grouping of outputs/functions, not data 
points)

� In each cluster, parameters are shared
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Finite Models: 
A Particular Mixtures of Experts Models (Regression)

� After training, let parameter vector         be assigned to cluster l

� As a prediction for situation j, based its past data                   one 
obtains

� Can be interpreted as a mixture of expert approach 
with experts                                    and  weight

� Note that in contrast to the typical mixture of expert approach, we 
assign a whole function (i.e., situation) to a component
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� Tresp and Yu (2004)

lw
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Dirichlet Process Mixture Models for Multitask 
Learning

� Tresp, Yu (2004): Overview
� Jordan (2005): Tutorial
� Tresp (2006): Tutorial
� Xue, Liao, Carin, Krishnapuram (2007) 

� If, in a Bayesian approach, we let the number 
of components go to infinity, we obtain a  
Dirichlet process mixture model

� Automatic model selection: in the sampling 
procedure only a finite  number of states is 
being used

� This is equivalent to a nonparametric 
hierarchical Bayesian approach 

w
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lw
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π
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Stick breaking 
representation of a 
Dirichlet process mixture 
model
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Summary Hierarchical Bayes

�Main benefit: data for a given situation is supported by data from other 
situations
�Training:

� Inputs (objects) can be arbitrary in different situations
(from another view: no problems with missing outputs)

�Generalization 
� to new objects (inputs) is possible
� to new situations (output dimensions) is possible

�Output driven regularization / dimensionality reduction!
�Not limited to models that are linear in the parameters
�More helpful references: 
�Caruana (1995), Thrun (1996): early work

� Zhang, Ghahramani and Yang (2005):find latent independent components (not just 
uncorrelated components)

� Barutcuoglu, Schapire and Troyanskaya (2006): application to gene function prediction
� Krishnapuram, Yu, Yakhnenko, Rao,  Carin (2008): recent NIPS workshop
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II.  Projection Methods
� For the set of objects all (or many) outputs (labels) are available  

� before � now 
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Projection Methods:

� Recall: Hierarchical Bayes
defines new derived basis functions

� The projection methods considered here have a similar goal: they
define new basis functions as a linear combination of the existing 
basis functions, such that the (independent) prediction of the outputs 
is improved
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� Principle component regression (PCR) is based on an optimal 
approximation of the design matrix

where

� The derived basis functions are  

� In our context, the disadvantage of PCR is that it only considers input 
information

Projection Methods: Principle Component Regression 
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Projection Methods: Canonical Correlation 

� It is desirable to also take into account output information

� An example is Canonical Correlation Analysis (CCA), which solves

� The solution is based on a generalized eigenvector problem 

� Related: Partial Least Squares (PLS), Linear Discriminant Analysis 
(LDA)

Yvu TT
vu Φ,max 1,1 == vvuu TT

� Shawe-Taylor and Christianini (2004)
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MORP: A New Projection Methods 

� MORP: Multi-output regularized projection uses the cost function
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� The solution takes on the form 

� Where            and                are found by solving a generalized 
eigenvalue problem
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MORP Applications 

� Task: Assigning several labels to images
� Images can be assigned to 37 categories

� Task: Predicting ratings of paintings for several users
� Ratings from several users are assigned to a painting

� Task: Predicting Reuters labels
� A news text can be assigned to several classes

� Yu, Yu, and Tresp (2005)
� Yu, Yu, Tresp, Kriegel (2006)
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The experiment is based on a subset of Corel image database, containing 1021 images that have been 
manually assigned into 35 categories (labels) based on their contents. On average, each image belongs to 3.6 
categories and each category on average contains 98 positive examples.

MORP: Predicting Image Labels based on Image Features

Test on same categories

Test on new categories with 
previously learned representation 
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Another Projection Approach using SVD

{ } ( )
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� Ando and Zhang (2005)
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project x into a lower-dim space
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• Connection to hierarchical Bayes: it implicitly 
assumes a learned covariance for w with the form

ΘΘ+ TI
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Summary: Projection Methods

� Suitable when for a given x, the target is known at all (or most) 
situations in training but in testing, no outputs are available

� Close connection to Hierarchical Bayes modeling

� Suitable for predicting many labels of objects (text annotaions, image 
annotations) based on object features!

� Generalization 
� to new objects (inputs) is possible
� to new situations (output dimensions) is possible

� Output driven dimensionality reduction!
� Limited to models that are linear in the parameters resp. kernel

representations
� There is a huge literature on projection methods 

(e.g., papers in Hardoon, Leen, Kaski and Shawe-Taylor (2008)
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III. Multivariate Models 
and Structured Outputs
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Main Difference

� With Hierarchical Bayes and with Projection Methods: after training, 
there is no coupling between the various outputs

∏ =
= M

j iijiii yPyP
1 ,,* ),|(),|( wxwx

� Now we consider models, for which -after training- the dependencies 
between the outputs are part of the model

),|,,( ,1, wxiMii yyP L
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Predicting a Single Output

� From

we can marginalize and obtain 

)|,,( ,1, iMii yyP xL

∑=
jiMii yyy

iMiiiji yyPyP
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,1,, )|,,()|(
L

L xx

Thus the marginal of a single output variable given the input is, in 
general,  a complex mixture model
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Motivation for Multivariate Models / Structured 
Outputs Models

� might be highly complex (a complex mixture

model) and a direct model becomes impractical from 
bias/variance considerations

� Statistical strength is shared since parameters depend on all outputs

� Structured outputs: 

� Dimensionality reduction via independence assumptions

� Dimensionality reduction via  parameter sharing

� Dimensionality reduction via locality: a given output variable is 
directly dependent on only a subset of the inputs

� In contrast a hierarchical Bayes model might be more suitable if 
conditional model follow similar and simple models

)|( , ijiyP x
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Intuition: Structured Output Prediction Problems 

� Exploit correlations and constraints in the outputs

� Based on independent classification, since the “v” had a higher 
probability than an “s”, an OCR gives “Braunvchweig” as an answer

� Since “sch” is very common in German, an “s” becomes more 
likely

� “Braunschweig” is in the dictionary  

“s” or “v”
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Intuitive Example  

A B C

1x 2x

B

C
CBA ,|

1x

2x
21,| xxB

1x
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21,| xxC
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Intuitive Example  

A B C

1x 2x

B

C
CBA ,|

1x

2x
21,| xxB

1x

2x
21,| xxC

A B C

1x 2x 1x

2x
21,| xxA
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Examples 

� Text to text-content (annotation)

� Text to parse trees

� Machine translation: English to French

� Images to image segmentation

� Images to image content

� Images to image annotation

� Images to image 3D pose

� Images to image robot arm coordinates
� From projections to reconstructed 

de-noised image (CT, MRI)

� DNA to DNA-segmentation

� DNA to protein structure
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Important Model Class: 
Conditional Log-Linear Models

� How does one design interesting multivariate models?
� An interesting class: conditional log-linear models (a.k.a generalized 

linear models) 
� Model design boils down to the design of interesting features

� Feature functions                                   Parameters: 
(input, output):
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Conditional Log-Linear Models from Graph Structure

� Given a undirected graphical structure and its independence 
assumptions, a probability distribution factorizes in clique potentials as
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Conditional Log-Linear Models from Graph Structure

� A particular parameterization

� If the features imply an independency structure, conditional log-linear 
models are also known as
� Conditional Markov networks
� Conditional (Markov) Random Fields (CRFs)
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Parameters Sharing

� Often one assumes some invariance, e.g., 

� Each clique uses the same feature functions
� Data efficiency
� Can handle sequences with varying lengths
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Social Network Type System

� Often, feature functions only involve some (local) input set: effective 
input dimensionality reduction

� Examples: social network analysis, hypertext classification, image 
reconstruction

� This is typical for situations where                    represent attributes and 
class labels of object k: in this case there is often only one data point 
available (e.g., only one social network)

� Also: semi-supervised learning is often applicable (Zhu, 2005)
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Typical Design Approaches for Multivariate / 
Structured Output  Models

1. Conditional from joint

2. Direct approach

3. From marginal to conditional

),|()|,( ww xyPyxP →

),|( wxyP

))(|()|( xyPyP ww →
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Multivariate Modeling: Conditional from Joint

� Train a joint probabilistic model 

� … and then condition after training 

)|,,,( ,1, wiMii xyyP L

),|,,( ,1, wiMii xyyP L

Applicable
� If the joint model  is easy to train
� If conditioning on the input is simple
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Conditional from Joint: Mixture Model 

� Joint distribution (complete data)

� Integration out the latent variable  leads to the log-likelihood (EM-training)

)|,()(),,( ,*,* lZyPlZPlZyP iiiiiii ==== xx

� Prediction 
of a single output:

� Sharing strength: component assignments of a data point in training 
depend on all outputs

� Infinite number of clusters -> Dirichlet process mixture model
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Conditional from Joint: Mixture Model
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� Colors: cluster assignment (grouping of data points)
� In each cluster (grouping of rows) parameters are shared
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Conditional from Joint: Based on Correlation Estimate s

� Empirical covariance joint model

� Reduced rank joint model:

� Reduced rank covariance

[ ]( ) [ ]( )TXYXY
N

1

[ ] Trr VUDXY )(≈

( ) Trrrr VDV
N

C
2)()( 1=

� Prediction of a single output based on reduced rank covariance

� Sharing strength: singular vectors depend on all data 
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Conditional from Joint: Additional Models

Similarly:

� memory-based
� Collaborative filtering using cosine or Pearson similarity score

� Clustering of rows

(For applications of both approaches to collaborative filtering, see 
Breese, Heckerman, Kadie (1998))

� Bayesian networks / Markov networks
� Train a joint Bayesian network / Markov network and then 

condition on the evidence and marginalize 

� Traditional Hidden Markov Models
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Multivariate Modeling: Direct Approach

Form the conditional version of a joint model or directly formulate a 
conditional model and train the conditional model directly

Example: CRFs

Log-likelihood:

Prediction: e.g., 
by finding the most 
likely configuration:
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Multivariate Modeling: From Marginal to Conditional

� Form a joint model of the outputs 

one can let the parameters be dependent 
on input x

)|,,( ,1, wMii yyP L

))(|,,( ,1, iMii yyP xwL
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� Assume a mixture model for the output variables

� We can define a conditional model as

With normalized “gating functions” and “expert function”

),|()|()( 2
,*,* IyNlZyPlZP lilii σµκ===

From Marginal to Conditional: Mixtures of Experts
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Tresp (2001)
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From Marginal to Conditional: Log-Linear Models

� Start with  ∑
=

=
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k
ikki yf
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� Again a log-linear model with  

� Design approach for CRFs (both input and output feature functions are 
indicator functions)
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Examples

1. High input dimensionality

2. High output dimensionality

3. High input and high output dimensionality
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High Input-Dimensionality

� CRFs for named entity recognition
� Input: 50 000 and more textual features
� Output: Sequence of maybe 10 entity classifications (with maybe 5 

states for each entity: null, city, organization, person name, 
occupation) (Lafferty,  McCallum, Pereira, 2001)

� Increasingly replacing Hidden Markov Models in many applications
� Interactions between outputs are explicitly modeled (since low-

dimensional)
� Parameter sharing
� Prediction: iterative process
� Clear performance benefits from training a multivariate model!
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High Input-Dimensionality: Conditional Random Field s
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High Input-Dimensionality:
CRFs for Named Entity Recognition and Relation Extraction

Altered expression Genetic variation

• Mining of the complete GeneRIF Db for gene-disease relations
• Disease genes according to GeneCards Db is 3.962 compared to 4.856 

disease genes in our network (as of May 2009)

• Bundschus, Dejori, Stetter, Tresp and Kriegel (2008) 
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High Input Dimensionality: Social Network Analysis 

� Outputs y correspond to attributes of entities (wealth, social status)
� Inputs are grouped and describe properties of nodes (e.g., persons)
� Often there is only one network (one data point): learning via 

parameter sharing
� New challenge since  number of neighbors is varying: aggregation

M
M yy KL ,,,, 1

)()1( xx

• Chakrabarti,  Dom and Indyk (1998)
• Neville and Jensen (2000)

• Taskar, Abbeel and  Koller (2002)
• Lu and Getoor (2003) 

• Neville and Jensen (2004)
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High Input Dimensionality: 
Collective Classification in Social Network Analysi s 

• Collective classification: a class label of an entity depends on the class 
label of entities to which a relationship exists (“knows”) (homophily)

• Inference in the network via  Gibbs sampling, relaxation labeling, iterative 
classification or loopy belief propagation

• Simple propagation models, e.g., Gaussian random in semi-supervised 
learning give very competitive results. 
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Examples

• The wealth of person j depends on 
features of the person j,  and on the 
wealth of the persons that person j
knows (person m and person l) and the 
wealth of persons which know person j
(person k)

• The classification of document j
depends on the classes of cited and 
citing documents and on document 
attributes (hypertext classification)
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High Output-Dimensionality

� Typical examples: 
� Recommendation system
� Order recommendation

� Input x often rather unimportant
� For a new x (user) prediction is possible when some ratings are 

available for that user (x alone is typically inefficient)
� Often: outputs characterize relationships to objects

� number of potential binary relationships quadratic in the number of 
objects

� Must be able to deal with missing outputs in training!
� Memory-based approaches, clustering, naïve Bayes, dependency 

networks, matrix factorization approaches (e.g., SVD-based)
� GP-HB is typically applicable here as well
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High Output-Dimensionality:
Recommendation System

Properties 
of user N

Properties 
of user 1

Preference 
for item 1 

Preference 
for item M

� Competitive solutions: matrix decomposition approaches (see 
Netflix competition)
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High Output-Dimensionality:
Prediction of Patient Procedures

� Input: patient properties (age, 
sex, prime complaint, …)

� Outputs: possible procedures 
(367) and diagnosis (703)

� Prediction of procedure and 
diagnosis based on patient 
properties and based on 
procedures already 
administered and available 
diagnosis 

• Xu, Tresp, Yu, Yu and Kriegel (2005)

PRM, E2: no coupling between outputs
E3: only prime complaint available 
E4: prime complaint and first procedure available 
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High Dimensionality in Input and Output

� Manual, automatic and semi automatic annotation of unstructured 
data (text document, images, multimedia)

� Basis for the Semantic Web
� > 10000 input features (sparse)
� > 1000 possible annotations / ontological concepts (sparse)
� Different levels of annotation

� Most important keywords: diabetes
� Assignment of ontological concepts

� This document covers the metabolic disease diabetes
� Content: extracted statements in formalized representation

� This report states that the patient John Dow has a severe form of the 
metabolic disease diabetes

� Worst case: Mapping from an exponential number of possible 
sentences to an exponential number of possible annotations

� NLP approaches
� Statistical approaches

� NER and RE with CRFs
� Text classification based on bag-of-words representation
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High Dimensionality in Input and Output: 
Topic Concept model

� The document is described by its 
topics

� Statistically extracted and 
modeled using latent Dirichlet
allocation (LDA)

� Dimensionality reduction of the 
input

� Similarly, the annotations (simple 
labels) are described based on topics

� Learned mapping between both 
representations

Bundschus, Dejori, Yu, Tresp and Kriegel (2008)

We propose a pairwise active appearance model (PAAM) to 
characterize statistical regularities in shape, appearance, and 
motion presented by a target that undergoes a series of motion 
phases, such as the left ventricle in echocardiography. The 
PAAM depicts the transition in motion phase through a Markov 
chain and the transition in both shape and appearance through a 
conditional Gaussian distribution. We learn from a database the 
joint Gaussian distribution of the shapes and appearances 
belonging to two consecutive motion phases (i.e., a pair of 
motion phases), from which we analytically compute the 
conditional Gaussian distribution. We utilize the PAAM in 
tracking the left ventricle contour in echocardiography and obtain 
improved tracking results in terms of localization accuracy when
compared with expert-specified contours. 

Machine Learning

Pattern Recognition

Medical Imaging



Page 105

High Dimensionality in Input and Output: 
Topic Concept model (2)
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Summary: 
Multivariate Modeling / Structured Output Prediction 

� Multivariate models are finding an increasing number of applications

� Since parameters often influence all outputs, learning is data efficient

� Most interesting is structured output prediction, where the constraints 
between outputs implied by a graphical model are exploited, which  
leads to a reduction in model complexity (exploitation of 
independencies)

� In addition,  parameter sharing leads to data efficient models

� At the same time, the dependency between input and a single output 
variable can be highly complex (highly complex mixture model)

� Highly active area of research (e.g., Gökhan, Hofmann, Schölkopf, Smola, Taskar, 
Vishwanathan, 2007, Borgwardt, Tsuda, Vishwanathan, Yan, 2008)
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Summary: Hierarchical Bayes versus Multivariate Modeling  

� Hierarchical Bayes finds common patterns in different columns
� Common representations (basis functions) to describe columns is 

found (linear HB, SVD)
� Each column is represented by a parameter vector

� In a mixture model: columns are grouped and share parameters
� A common parameter  vector is assigned to several output 

dimensions or columns (in the same cluster)

� In a multivariate analysis
� SVD finds common representations of for rows

� Each row is represented by a parameter vector
� In a mixture model: columns are grouped and share parameters

� A common parameter  vector is assigned to several data points 
or input dimensions (in the same cluster) 
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V. Link Prediction / Relationship 
prediction
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From Attributes to Relations

� So far we mostly focused on the situation where the outputs y
correspond to attributes of one entity (one sentence, one social 
network) or, sometimes equivalently,  to attributes of many entities 
(many words, many members of a social network)
� In a social network analysis: relationships were assumed known but 

some object attributes were assumed unknown

� Now we want to study applications were the relationships between 
objects are partially unknown: 
� In a social network analysis: relationships between entities (knows, 

friendOf) are unknown

� Getoor, Friedman, Koller and Taskar (2002)
� Taskar, Wong, Abbeel and Koller (2003)
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Predicting a Single Relationship Type

� We will be concerned with the situation where only one relationship 
type is concerned

� In this case a matrix representation is appropriate where

describes the relationship between row entity i and column entity j

� A new aspect: attributes for both input entities and output entities are 
available! 

� Symmetrical representation
� Note that, as before,  the whole network of interlinked entities should 

be considered to represent a single data point, thus the matrix does not 
represent i.i.d samples 

� In the spirit of the previous discussion we will focus on generalizations 
of mixture models and of SVD approaches 

jiy ,
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Hierarchical Bayesian versus Multivariate Mixture Models  

� Hierarchical Bayes:
� In a mixture model: columns are grouped and share parameters

� A common parameter  vector is assigned to several output 
dimensions or columns (in the same cluster)

� In a multivariate analysis
� In a mixture model: columns are grouped and share parameters

� A common parameter vector is assigned to several data points 
or input dimensions (in the same cluster) 

� Now
� A mixture model for both rows and columns 
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Recall: Mixture Analysis of Multivariate data
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� Colors: cluster assignment (grouping of data points)
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Recall: Mixture Analysis of Outputs
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� Dirichlet process mixture models (Nonparametric Hierarchical Bayes)
� Colors: cluster assignment (grouping of outputs/functions, not data 

points)
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Mixture Analysis of Input Objects and Output 
Objects
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� Colors: cluster assignment (grouping of outputs/functions, not data points)
� t: attributes of output objects
� Infinite Hidden Relational Model (IHRM, Xu et al. 2006, Kemp et al. 2006)

1t MtL

� Note: not really one matrix anymore: a relational data base would require at 
least two tables
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Example: Social Network

To introduce the IHRM we use a 
social network example

� Some persons are known to be 
friends

� Persons can either be male or 
female

� Can we predict friendship?

Graphical representation:
� Sociogram
� Entity-relationship graph
� RDF-Graph

� Xu, Tresp, Yu, Yu (2008)
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Relational Graph and Random Variables

� Each random variable 
stands for the truth value of 
a statement
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A Possible Ground Bayesian Networks

� The red directed arcs indicate 
direct probabilistic 
dependencies

� Here we assume that 
friendship can be predicted by 
the attributes (gender)

� We obtain a ground Bayesian 
network

� Problems:

� Only local dependencies; 
no global propagation of 
information

� No collaborative effect 
(exploiting friendship 
patterns)
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Hidden Relational Model (HRM)

� In the HRM we introduce a latent 
(cluster) variable for each object

� The latent variable is the parent of all 
nodes involving statements that 
include the object

� The latent variable represents the 
unknown information that would be 
sufficient to predict links (latent 
attributes)

� The state of the latent variable 
depends on

� The attributes (gender)
� The links an object is involved in and the states of the latent variables of the 

objects involved in the link. 
� Identification of roles of actors
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Infinite Hidden Relational Model (IHRM)

Infinitely many states!

� In the IHRM the number of states 
in each latent variable is infinite

� We achieve a nonparametric 
hierarchical Bayesian model in 
form of a Dirichlet process 
mixture model

� A property of the Dirichlet
process mixture models: During 
inference, the number of hidden 
states is adapted to the data in a 
self organized way
� Important if different object 

types are involved 
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Information Propagation in IHRM 

� Information propagates along 
“relational paths”

� All known information propagates 
to the relation of interest via 
hidden variables of the involved 
objects
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Advantages of the IHRM

� Easy to apply without any extensive structural learning
� Structural learning in Statistical Relational Learning can be quite 

demanding

� Information can flow through the network of latent variables and have 
a global effect
� Collaborative effect (exploiting friendship patterns)

� The ground network is guaranteed to have no directed loops

� Clustering in relational domain (multi-relational clustering)
� Analysis of clustering structure based on relational information
� Each entity class can learn its optimal number of clusters

� No computationally-expensive feature construction (aggregation) and 
no global normalization
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Inference/Learning in the IHRM

� A full Bayesian approach for learning and inference in the IHRM is 
feasible (and even practical) using Gibbs sampling

� Mean-field approximations

� Gibbs sampling simulates the model (i.e., samples from parameters 
and variables) conditioned on the observations
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Node: gene
Link:   interaction 
Color: cluster.

IHRM Model for Modeling Protein Interactions 

� Reckow and Tresp (2008)
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Stochastic Relational Model: 
Multi-task Learning using Task-specific features

� Similar architecture but the latent components consist of  K continuous 
variables generated from Gaussian processes
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Stochastic Relational Model
Multi-task Learning using Task-specific features (2)
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� Given two prior kernel 

functions based on row 
& column features: 

SRM defines a 
distribution for the rank-k 
relational function f(x,t)

� Generalization of matrix 
factorization using 
attributes in a 
hierarchical Bayesian 
framework
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� Efficient Gibbs sampler is developed to do full Bayesian inference (code is available online)
� Applied to Netflix data (480189x17770), gave excellent performance
� In the limit k->infinity, f(x,t) follows a Gaussian process                        .
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Summary: Link/Relationship Prediction 

� The IHRM is a natural generalization of mixture models and of 
nonparametric Bayesian models to relational domains: both 
attributes and relationships can be predicted

� The  SRM is a natural generalization of PCA to a relational domain

� Both the IHRM and the SRM can be generalized to domains with 
multiple relation types (i.e., multiple tables)
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What we Did Not Cover: Max Margin Approaches

These approaches are related to CRFs but optimize a margin-based 
cost function

• No normalization function
• Potentially: advantages in terms of accuracy and tunability to 

specific lass functions 

• Taskar, Guestrin and Koller (2004)
• Tsochantaridis, Hofmann, Joachims and Altun (2004)
• Tsochantaridis, Joachims, Hofmann, and Altun (2006)
• Rousu, Saunders, Szedmak and Shawe-Taylor (2006)
• Rousu, Saunders, Szedmak and Shawe-Taylor (2007) 
• Altun, Hofmann and Tsochantaridis (2007)
• Weston, Bakir, Bousquet, Mann, Noble and Schölkopf (2007)
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What we Did Not Cover: Neural Networks

� The very first Neural Networks had multiple outputs (e.g., Nettalk)
� There are Neural Networks for multi-task learning and for structured 

prediction
� E.g.,  papers by Yann LeCun, Yoshua Bengio

� Also ICML 2009 Workshop on Learning Feature Hierarchies. 
Organizers: Kai Yu, Ruslan Salakhutdinov, Yann LeCun, Geoff Hinton, 
Yoshua Bengio
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Conclusions 

� We have shown that in many situations it makes sense to predict M outputs than to only 
predict one

� Structures Output Prediction exploits both prior knowledge about the structural 
independencies between outputs and parameter sharing

� An important model class concerns conditional random fields (CRFs)
� At the same time, the dependency between input and a single output variable can be 

highly complex

� In Link Prediction / Relationship Prediction the outputs model the relationships between 
entities

� Hierarchical Bayes and Projection Methods are applicable when the functional form of the 
dependencies between input and each output is similar and is known

� Hierarchical Bayes is more flexible since it can easily deal with nonlinear models and with 
missing outputs

� Nonparametric Hierarchical Bayes (Gaussian processes, Dirichlet process mixture 
models) provide flexible model classes

� Multivariate modeling exploits dependencies between inputs and outputs but also 
dependencies in between outputs

� Often all outputs are sensitive to a parameter and learning is data efficient  
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