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The Main Idea
I Observe a set of events S = {tk}K

k=1
I Could be in time or space.
I Model as Poisson with intensity λ(t).
I Use a Gaussian process prior on λ(t).
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Point Processes
Random countable subsets of some domain.

I I’ll assume some bounded subset V of RD.
“A random locally-finite counting measure.”
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Point Processes

Zappo’s Spatiotemporal Marked
http://www.zappos.com/map/



Point Processes, continued

Applications Are Everywhere
I Temporal: neural spikes, credit defaults,

bus arrivals, terrorist attacks, ...
I Spatial: galaxies, forests, cities, ...

Different From Density Modeling
I The number of data matter.
I The data are not generally i.i.d.



Homogeneous Poisson Process
I Your basic vanilla point process.
I Has a constant intensity λ > 0.

I Expected number of events per unit time.

I An interval of length ∆t has a
Poisson-distributed number of events:

p(N(∆t) = k |λ) =
(λ∆t)

k

k !
exp {−λ∆t}

I Disjoint intervals are independent.
I The time between arrivals is

exponentially-distributed with parameter λ.
I For a spatial setting, generalize “interval.”



Homogeneous Poisson Process



Inhomogeneous Poisson Process

I Intensity is a function of time: λ(t) ≥ 0.
I Disjoint intervals are still independent.
I The number of events in some interval t1 to

t2 is Poisson distributed with parameter

λt1,t2 =

∫ t2

t1
dt λ(t)

I In a spatial setting, generalize the region of
integration.



Inhomogeneous Poisson Process



How to Model the Intensity Function?
I Inference in the homogeneous case is easy.
I Varying λ is much more interesting!

Nonparametric Prior on λ(t)
I What if we don’t know much about λ(t)?
I Get λ(t) from a stochastic process.
I Now called a Cox Process
I With a GP: Gaussian Cox Process

The Big Picture
This talk is about constructing a Gaussian
Cox Process that allows tractable inference.
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Why Gaussian Processes?
I A nonparametric prior on functions.
I Popular for Bayesian nonlinear regression

and classification.
I Components in larger Bayesian models.

GP Ingredients
I Input space X (e.g. RD)
I Output space Y = R
I Positive-definite covariance function:

K (x , x ′; θ) : X × X → R
I Mean function m(x ; θ) : X → Y



Why Gaussian Processes?

GP Mechanics
I Data are input-output pairs: D = {xn, yn}N

n=1
I Turn the inputs into a covariance matrix.
I Use the covariance matrix to construct a

joint Gaussian distribution on the outputs.

Useful Because Tractable
I Predictive distributions are Gaussian.
I The marginal likelihood has closed form.



Marginalisation of Gaussians
The Key Ingredient for GPs

I Joint Gaussian P(y1, . . . , yN) = N (K )

I Marginal covariance is the submatrix.
I Conditional is also Gaussian.


y1
y2
y3
y4
y5

 ∼ N



k1,1 k1,2 k1,3 k1,4 k1,5
k2,1 k2,2 k2,3 k2,4 k2,5
k3,1 k3,2 k3,3 k3,4 k3,5
k4,1 k4,2 k4,3 k4,4 k4,5
k5,1 k5,2 k5,3 k5,4 k5,5
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Why Gaussian Processes?
Nearby inputs have covarying outputs.
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Recommended Reading

MacKay Rasmussen and
Williams

Both are free online!



The Log Gaussian Cox Process

I GPs give nonparametric priors on functions.
I Use them for priors on Poisson intensities!

Do the Natural Thing
I Exponentiate the draw from the GP:

g(t) ∼ GP(t , θ)

λ(t) = exp{g(t)}

I Rathbun and Cressie, 1994
I Jesper Møller and colleagues, 1998



The Log Gaussian Cox Process
Two Flies in the Ointment

1. g(t) is infinite-dimensional.
2. The posterior is doubly-intractable.

I Likelihood only known to within a constant.
I Example: undirected graphical models

Likelihood of events {tk}K
k=1 between 0 and T :

p({tk}K
k=1 |g(t)=g) =

exp

−
∫ T

0
exp{g(t)} dt +

K∑
k=1

g(tk)
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Doubly-Intractable Inference
I Intractable marginal likelihoods are

common in interesting Bayesian models.
I This difficulty depends on the parameters.
I Even Markov chain Monte Carlo is hard.

Good News
I Recent MCMC methods address inference

in doubly-intractable models.
I Møller et al., 2004, Murray et al., 2006
I The Catch: You have to be able to

generate exact data from the model.
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A Different Prior on Intensities
Like before, g(t) is a draw from a GP. Transform:

λ(t) = σ(g(t)) λ̄(t)

The function σ(·) is a sigmoid, like:

σ(z) =
1

1 + exp{−z}

The dominating intensity λ̄(t) is something
simple, like a constant function:

λ̄(t) = λ?

We call this the sigmoidal Gaussian Cox
process (SGCP).



Realizations from the SGCP Prior
Random positive functions beneath λ̄(t).



Generating Data from the SGCP

We can generate exact Poisson data from a
random intensity drawn from this prior.

First, Two Useful Algorithms
I Simulating homogeneous Poisson data.
I How to perform thinning of Poisson data.



Simulate homogeneous Poisson data

Assuming intensity λ on region V:
1. Find the measure of V, i.e. µ(V).
2. Sample the number of events:

N(V) ∼ PO(λµ(V))

3. Distribute the N(V) points independently
and uniformly on V.



Simulate homogeneous Poisson data
Step 0: Region V, constant intensity λ? = 2.

V



Simulate homogeneous Poisson data
Step 1: Get the volume of V . . .

4

4V



Simulate homogeneous Poisson data
Step 1: Get the volume of V . . . µ(V) = 4×4 =16

4

4V



Simulate homogeneous Poisson data
Step 2: Draw the Poisson number of events K .

4

4V



Simulate homogeneous Poisson data
Step 2: K ∼ PO(λ?µ(V) = 2× 4× 4) . . .

4

4V



Simulate homogeneous Poisson data
Step 2: K ∼ PO(λ?µ(V) = 2× 4× 4) . . . 30

4

4V



Simulate homogeneous Poisson data
Step 3: Distributed the K events uniformly in V.

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��

��

��

��

��

��

��

��

�
�
�
�

�
�
�
�

�
�
�
��

�
�
�

�
�
�
�

�
�
�
�

�
�
�
��
�
�
�

�
�
�
��

�
�
�

�
�
�
�



Independent Thinning

Due to Lewis and Shedler, 1979 – For some
function φ : RD → [0,1]:

1. Get some Poisson data {tk}K
k=1 from λ(t).

2. Remove tk with coin flip probability 1−φ(tk).
3. The remaining events are Poisson with

intensity φ(t)λ(t).

This is very similar to rejection sampling.



Independent Thinning
Step 1: Intensity function λ(t).

λ(t)

time



Independent Thinning
Step 2: Get some events from λ(t).

λ(t)

time



Independent Thinning
Step 3: Another function φ(t) : X → [0,1].

λ(t)

time

φ(t)

1

0



Independent Thinning
Step 4: Delete event tk with probability 1− φ(tk).

λ(t)

time

φ(t)

1

0



Independent Thinning
Step 5: Remaining events are from λ(t)φ(t).

λ(t)

time

φ(t)

1

0

λ(t)φ(t)



Back to the SGCP
1. Generate Poisson data from λ(t) = λ?.
2. Draw a sample from the GP at the events.
3. Thin events according to the GP draw.
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Back to the SGCP
1. Generate Poisson data from λ(t) = λ?.
2. Draw a sample from the GP at the events.
3. Thin events according to the GP draw.



Properties of SGCP Generation

The data are exactly drawn from a Poisson
process with a random intensity from the SGCP.

We did not have to discover the function at more
than a finite number of locations.

We did not have to integrate the function.
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Inference with the SGCP

Given K events {tk}K
k=1 on V, and the SGCP

prior, what is the posterior distribution on g(t)?

Still doubly-intractable:

p({tk}K
k=1 |g(t), λ?) =

exp

−
∫ T

0
σ(g(t))λ? dt


K∏

k=1

σ(g(tk)) λ̄(tk)



Inference Via the Latent History
Augment the state with the “latent history” of the
generative procedure. Assume there were M
thinned events {sm}M

m=1 and write the joint
distribution of everything:

p({tk}K
k=1, {sm}M

m=1,g |λ?, θ) =

(λ?)K+M exp {−λ?µ(V)}
K∏

k=1

σ(g(tk))
M∏

m=1

σ(−g(sm))

× GP({g(tk)}, {g(sm)} | θ)

Ugly, but not intractable!



Inference Via the Latent History
I Homogeneous Poisson process

I Probability of unthinned events
I Probability of thinned events
I Gaussian process prior

p({tk}K
k=1, {sm}M

m=1,g |λ?, θ) =

(λ?)K+M exp {−λ?µ(V)}

×
∏K

k=1 σ(g(tk))

×
∏M

m=1 σ(−g(sm))

× GP({g(tk)}, {g(sm)} | θ)
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Overview of the MCMC Sampler

We update each part of the latent state
separately, conditioned on the others using a
Gibbs-like procedure.

I Insert and remove latent thinned events via
Metropolis–Hastings

I Move latent thinned events around via
Metropolis–Hastings

I Sample the latent function via Hamiltonian
Monte Carlo.

Also: hyperparameters of the GP, and λ?.



Inserting/Removing Latent Events
Birth Proposal

I Also propose a location ŝ uniformly in V.
I Draw g(ŝ) conditionally from the GP.

ains =
µ(V)λ?

(M + 1)
σ(−g(ŝ))

Death Proposal
I Pick one of the M at random.

adel =
M

µ(V)λ?
σ(−g(sm))−1



Moving Latent Events Around

I Iterate over each of the M events.
I Use a proposal distribution q(ŝ ← s).
I Draw g(ŝ) conditionall from th GP.
I Accept with M-H ratio:

aloc =
q(sm ← ŝm)σ(−g(ŝm))

q(ŝm ← sm)σ(−g(sm))



Updating the Latent Function
I The GP prior enforces a lot of structure.
I Use Hamiltonian Monte Carlo for efficiency.
I Uses gradients to reduce random walk

behavior.

p(g | {tk}K
k=1, {sm}M

m=1, λ
?, θ) ∝

GP({g(tk)}, {g(sm)} | {tk}K
k=1, {sm}M

m=1, θ)

×
K∏

k=1

σ(g(tk))
M∏

m=1

σ(−g(sm))



Updating Hyperparameters
GP Hyperparameters
Conditioned on the latent events and the latent
function, just use the marginal likelihood.

Dominating Intensity Hyperparameters
Treat the union of observations and latent
events as a parametric Poisson model. For the
version with constant λ?, a gamma prior is
conjugate:

α = α0 + K + M
β = β0 + µ(V)



Empirical Evaluations
Synthetic Data

I Three known intensity functions.
I One training set, ten held-out test sets.
I Evaluated `2 norm and predictive logprob.
I Compared to kernel smoothing and LGCP.

Real-World Data
I Coal mining disasters in the UK,

1875-1962.
I Redwood forest data, scaled to unit square.



Synthetic Data Set 1
λ1(s) = 2 exp{−s/15}+ exp{−((s − 25)/10)2} on [0,50]

SGCP KS LGCP10 LGCP25 LGCP100

λ1(s)
`2 4.20 6.65 5.96 6.12 5.44
lp -45.11 -46.41 -46.00 -46.80 -45.24
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Synthetic Data Set 2
λ2(s) = 5 sin(s2)+6 on [0,5]

SGCP KS LGCP10 LGCP25 LGCP100

λ2(s)
`2 38.38 73.71 70.34 53.27 43.51
lp 24.45 28.19 23.36 22.89 25.29
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Synthetic Data Set 3
Piecewise linear on [0,100]

SGCP KS LGCP10 LGCP25 LGCP100

λ3(s)
`2 11.41 30.56 90.76 22.14 10.79
lp -43.39 -46.47 -53.67 -52.31 -47.16
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Coal Mining Disaster Data

I Coal mine disasters in UK
between 1851 and 1962.

I 191 accidents.
I Commonly studied in

changepoint models.
I Good example of a

nonstationary Poisson
process.

Only a “disaster” if ten or more people killed!



Coal Mining Disaster Data
191 events between 15 March 1851 and 22 March 1962



Coal Mining Disaster Data
191 events between 15 March 1851 and 22 March 1962



Redwoods
195 trees, scaled to the unit square
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Redwoods
Histogram of locations of thinned events
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Extended Point Processes
Marking
Additional random data associated with events.

I Example: random city locations each with
random population

Interaction: Clustering
Points like to be closer together than Poisson.

I Example: Plants germinate via seeds.

Interaction: Repulsion
Points like to be farther apart than Poisson.

I Example: Neurons have refractory periods.



Marked Poisson Processes



Marked Poisson Processes



The Boolean Model



The Boolean Model



Interacting Point Processes

If the process is defined as a generative
procedure, we can extend the SGCP directly to
simulate data from it.

Contrast with general Gibbs/Markov point
processes (e.g. Strauss process), where
interaction is defined in terms of a potential
function.



The Neyman–Scott Process
aka “The Matérn Cluster Process”



The Neyman–Scott Process
aka “The Thomas Process”



The Matérn Type III Process
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Summary

I The Poisson process is useful.
I NP Bayesian inference would be nice.
I GP priors on intensity functions have been

intractable.
I Our construction uses a generative model

to avoid intractability.
I The method is competitive in practice.
I The method can be extended to other point

processes.
I Bad News: O(N3) scaling from GP.



Thanks

I Iain Murray (Toronto)
I David MacKay (Cambridge)
I Radford Neal (Toronto)
I Zoubin Ghahramani (Cambridge/CMU)
I Maneesh Sahani (Gatsby)

Funded by the Gates Cambridge Trust.


	The Poisson Process
	The Gaussian Process
	The Sigmoidal Gaussian Cox Process
	Inference with the SGCP
	Extensions
	Summary

