Tractable Nonparametric Bayesian Inference in Poisson Processes

Ryan Prescott Adams

Cavendish Laboratory University of Cambridge http://www.inference.phy.cam.ac.uk/rpa23/

11 June 2009

Joint work with Iain Murray and David MacKay

The Main Idea

- Observe a set of events $S = \{t_k\}_{k=1}^K$
- Could be in time or space.
- Model as Poisson with intensity $\lambda(t)$.
- Use a Gaussian process prior on $\lambda(t)$.

Outline

The Poisson Process

The Gaussian Process

The Sigmoidal Gaussian Cox Process

Inference with the SGCP

Extensions

Summary

Outline

The Poisson Process

The Gaussian Process

The Sigmoidal Gaussian Cox Process

Inference with the SGCP

Extensions

Summary

Point Processes

Random countable subsets of some domain.

- ▶ I'll assume some bounded subset \mathcal{V} of \mathbb{R}^{D} .
- "A random locally-finite counting measure."

Temporal

Temporal

Point Processes Spatial

Spatial

Marked

Point Processes

Zappo's Spatiotemporal Marked http://www.zappos.com/map/

Point Processes, continued

Applications Are Everywhere

- Temporal: neural spikes, credit defaults, bus arrivals, terrorist attacks, ...
- Spatial: galaxies, forests, cities, ...

Different From Density Modeling

- The number of data matter.
- ► The data are not generally i.i.d.

Homogeneous Poisson Process

- Your basic vanilla point process.
- Has a constant intensity $\lambda > 0$.
 - Expected number of events per unit time.
- An interval of length ∆_t has a Poisson-distributed number of events:

$$p(N(\Delta_t) = k \mid \lambda) = rac{(\lambda \Delta_t)^k}{k!} \exp \left\{ -\lambda \Delta_t
ight\}$$

- Disjoint intervals are independent.
- The time between arrivals is exponentially-distributed with parameter λ.
- For a spatial setting, generalize "interval."

Homogeneous Poisson Process

Inhomogeneous Poisson Process

- Intensity is a function of time: $\lambda(t) \ge 0$.
- Disjoint intervals are still independent.
- The number of events in some interval t₁ to t₂ is Poisson distributed with parameter

$$\lambda_{t_1,t_2} = \int_{t_1}^{t_2} \mathrm{d}t \ \lambda(t)$$

In a spatial setting, generalize the region of integration.

Inhomogeneous Poisson Process

How to Model the Intensity Function?

- Inference in the homogeneous case is easy.
- Varying λ is much more interesting!
- Nonparametric Prior on $\lambda(t)$
 - What if we don't know much about $\lambda(t)$?
 - Get $\lambda(t)$ from a stochastic process.
 - Now called a Cox Process
 - With a GP: Gaussian Cox Process

The Big Picture

This talk is about constructing a Gaussian Cox Process that allows tractable inference.

Outline

The Poisson Process

The Gaussian Process

The Sigmoidal Gaussian Cox Process

Inference with the SGCP

Extensions

Summary

- A nonparametric prior on functions.
- Popular for Bayesian nonlinear regression and classification.
- Components in larger Bayesian models.
- **GP** Ingredients
 - ▶ Input space \mathcal{X} (e.g. \mathbb{R}^D)
 - Output space $\mathcal{Y} = \mathbb{R}$
 - Positive-definite covariance function: $K(x, x'; \theta) : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$
 - Mean function $m(x; \theta) : \mathcal{X} \to \mathcal{Y}$

GP Mechanics

- ▶ Data are input-output pairs: $\mathcal{D} = \{x_n, y_n\}_{n=1}^N$
- Turn the inputs into a covariance matrix.
- Use the covariance matrix to construct a joint Gaussian distribution on the outputs.

Useful Because Tractable

- Predictive distributions are Gaussian.
- The marginal likelihood has closed form.

Marginalisation of Gaussians The Key Ingredient for GPs

▶ Joint Gaussian $P(y_1, ..., y_N) = \mathcal{N}(\mathbf{K})$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} k_{1,1} & k_{1,2} & k_{1,3} & k_{1,4} & k_{1,5} \\ k_{2,1} & k_{2,2} & k_{2,3} & k_{2,4} & k_{2,5} \\ k_{3,1} & k_{3,2} & k_{3,3} & k_{3,4} & k_{3,5} \\ k_{4,1} & k_{4,2} & k_{4,3} & k_{4,4} & k_{4,5} \\ k_{5,1} & k_{5,2} & k_{5,3} & k_{5,4} & k_{5,5} \end{bmatrix} \right)$$

Marginalisation of Gaussians The Key Ingredient for GPs

- ▶ Joint Gaussian $P(y_1, ..., y_N) = \mathcal{N}(\mathbf{K})$
- Marginal covariance is the submatrix.

$$\begin{bmatrix} \mathbf{y}_{1} \\ \mathbf{y}_{2} \\ \mathbf{y}_{3} \\ \mathbf{y}_{4} \\ \mathbf{y}_{5} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} k_{1,1} & k_{1,2} & k_{1,3} & k_{1,4} & k_{1,5} \\ k_{2,1} & k_{2,2} & k_{2,3} & k_{2,4} & k_{2,5} \\ k_{3,1} & k_{3,2} & k_{3,3} & k_{3,4} & k_{3,5} \\ k_{4,1} & k_{4,2} & k_{4,3} & k_{4,4} & k_{4,5} \\ k_{5,1} & k_{5,2} & k_{5,3} & k_{5,4} & k_{5,5} \end{bmatrix} \right)$$

Marginalisation of Gaussians The Key Ingredient for GPs

- ▶ Joint Gaussian $P(y_1, ..., y_N) = \mathcal{N}(\mathbf{K})$
- Marginal covariance is the submatrix.
- Conditional is also Gaussian.

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} k_{1,1} & k_{1,2} & k_{1,3} & k_{1,4} & k_{1,5} \\ k_{2,1} & k_{2,2} & k_{2,3} & k_{2,4} & k_{2,5} \\ k_{3,1} & k_{3,2} & k_{3,3} & k_{3,4} & k_{3,5} \\ k_{4,1} & k_{4,2} & k_{4,3} & k_{4,4} & k_{4,5} \\ k_{5,1} & k_{5,2} & k_{5,3} & k_{5,4} & k_{5,5} \end{bmatrix} \right)$$

Nearby inputs have covarying outputs.

Recommended Reading

Carl Edward Rasmussen and Christopher K. I. Williams

MacKay

Rasmussen and Williams

Both are free online!

The Log Gaussian Cox Process

- GPs give nonparametric priors on functions.
- Use them for priors on Poisson intensities!
- Do the Natural Thing
 - Exponentiate the draw from the GP:

$$egin{aligned} egin{aligned} egi$$

- Rathbun and Cressie, 1994
- Jesper Møller and colleagues, 1998

The Log Gaussian Cox Process Two Flies in the Ointment

- 1. g(t) is infinite-dimensional.
- 2. The posterior is **doubly-intractable**.
 - Likelihood only known to within a constant.
 - Example: undirected graphical models

Likelihood of events $\{t_k\}_{k=1}^{K}$ between 0 and *T*:

$$p(\{t_k\}_{k=1}^K | g(t) = g) = \ \exp\left\{-\int_0^T \exp\{g(t)\} dt + \sum_{k=1}^K g(t_k)
ight\}$$

The Log Gaussian Cox Process Two Flies in the Ointment

- 1. g(t) is infinite-dimensional.
- 2. The posterior is **doubly-intractable**.
 - Likelihood only known to within a constant.
 - Example: undirected graphical models

Likelihood of events $\{t_k\}_{k=1}^{K}$ between 0 and *T*:

$$p(\{t_k\}_{k=1}^{K} | g(t) = g) = \\ exp\left\{ -\int_0^T exp\{g(t)\} dt + \sum_{k=1}^{K} g(t_k) \right\}$$

Doubly-Intractable Inference

- Intractable marginal likelihoods are common in interesting Bayesian models.
- *This* difficulty depends on the parameters.
- Even Markov chain Monte Carlo is hard.

Good News

- Recent MCMC methods address inference in doubly-intractable models.
- Møller et al., 2004, Murray et al., 2006
- The Catch: You have to be able to generate exact data from the model.

The Poisson Process

The Gaussian Process

The Sigmoidal Gaussian Cox Process

Inference with the SGCP

Extensions

Summary

A Different Prior on Intensities Like before, g(t) is a draw from a GP. Transform:

$$\lambda(t) = \sigma(g(t))\,\overline{\lambda}(t)$$

The function $\sigma(\cdot)$ is a sigmoid, like:

$$\sigma(z) = \frac{1}{1 + \exp\{-z\}}$$

The *dominating intensity* $\bar{\lambda}(t)$ is something simple, like a constant function:

$$\bar{\lambda}(t) = \lambda^{\star}$$

We call this the **sigmoidal Gaussian Cox process** (SGCP).

Realizations from the SGCP Prior Random positive functions beneath $\bar{\lambda}(t)$.

Generating Data from the SGCP

We can generate **exact Poisson data** from a random intensity drawn from this prior.

First, Two Useful Algorithms

- Simulating homogeneous Poisson data.
- How to perform **thinning** of Poisson data.
Assuming intensity λ on region \mathcal{V} :

- 1. Find the measure of \mathcal{V} , i.e. $\mu(\mathcal{V})$.
- 2. Sample the number of events: $N(\mathcal{V}) \sim \mathfrak{Po}(\lambda \mu(\mathcal{V}))$
- 3. Distribute the $N(\mathcal{V})$ points independently and uniformly on \mathcal{V} .

Simulate homogeneous Poisson data Step 0: Region \mathcal{V} , constant intensity $\lambda^* = 2$.

Simulate homogeneous Poisson data Step 1: Get the volume of \mathcal{V} ...

Simulate homogeneous Poisson data Step 1: Get the volume of $\mathcal{V} \dots \mu(\mathcal{V}) = 4 \times 4 = 16$

Simulate homogeneous Poisson data Step 2: Draw the Poisson number of events *K*.

Simulate homogeneous Poisson data Step 2: $K \sim \operatorname{Po}(\lambda^* \mu(\mathcal{V}) = 2 \times 4 \times 4) \dots$

Simulate homogeneous Poisson data Step 2: $K \sim \operatorname{Po}(\lambda^* \mu(\mathcal{V}) = 2 \times 4 \times 4) \dots 30$

Simulate homogeneous Poisson data Step 3: Distributed the K events uniformly in V.

Independent Thinning

Due to Lewis and Shedler, 1979 – For some function $\phi : \mathbb{R}^{D} \rightarrow [0, 1]$:

- 1. Get some Poisson data $\{t_k\}_{k=1}^{K}$ from $\lambda(t)$.
- 2. Remove t_k with coin flip probability $1 \phi(t_k)$.
- 3. The remaining events are Poisson with intensity $\phi(t)\lambda(t)$.

This is very similar to rejection sampling.

Independent Thinning Step 1: Intensity function $\lambda(t)$.

time

Independent Thinning Step 2: Get some events from $\lambda(t)$.

time

time

0

Independent Thinning Step 4: Delete event t_k with probability $1 - \phi(t_k)$. $\lambda(t)$ $\phi(t)$ time

Independent Thinning Step 5: Remaining events are from $\lambda(t)\phi(t)$.

- 1. Generate Poisson data from $\lambda(t) = \lambda^*$.
- 2. Draw a sample from the GP at the events.
- 3. Thin events according to the GP draw.

- 1. Generate Poisson data from $\lambda(t) = \lambda^*$.
- 2. Draw a sample from the GP at the events.
- 3. Thin events according to the GP draw.

- 1. Generate Poisson data from $\lambda(t) = \lambda^*$.
- 2. Draw a sample from the GP at the events.
- 3. Thin events according to the GP draw.

- 1. Generate Poisson data from $\lambda(t) = \lambda^*$.
- 2. Draw a sample from the GP at the events.
- 3. Thin events according to the GP draw.

- 1. Generate Poisson data from $\lambda(t) = \lambda^*$.
- 2. Draw a sample from the GP at the events.
- 3. Thin events according to the GP draw.

- 1. Generate Poisson data from $\lambda(t) = \lambda^*$.
- 2. Draw a sample from the GP at the events.
- 3. Thin events according to the GP draw.

Properties of SGCP Generation

The data are **exactly drawn** from a Poisson process with a random intensity from the SGCP.

We did not have to discover the function at more than a **finite number** of locations.

We did not have to integrate the function.

Outline

The Poisson Process

The Gaussian Process

The Sigmoidal Gaussian Cox Process

Inference with the SGCP

Extensions

Summary

Inference with the SGCP

Given *K* events $\{t_k\}_{k=1}^{K}$ on \mathcal{V} , and the SGCP prior, what is the posterior distribution on g(t)?

Still doubly-intractable:

$$p(\lbrace t_k \rbrace_{k=1}^{K} \mid g(t), \lambda^*) = \\ \exp\left\{-\int_0^T \sigma(g(t)) \lambda^* dt\right\} \prod_{k=1}^{K} \sigma(g(t_k)) \,\overline{\lambda}(t_k)$$

Inference Via the Latent History

Augment the state with the "latent history" of the generative procedure. Assume there were *M* thinned events $\{s_m\}_{m=1}^{M}$ and write the joint distribution of everything:

$$p(\lbrace t_k \rbrace_{k=1}^{K}, \lbrace s_m \rbrace_{m=1}^{M}, \boldsymbol{g} \mid \lambda^*, \theta) = \\ (\lambda^*)^{K+M} \exp\{-\lambda^* \mu(\mathcal{V})\} \prod_{k=1}^{K} \sigma(\boldsymbol{g}(t_k)) \prod_{m=1}^{M} \sigma(-\boldsymbol{g}(s_m)) \\ \times \mathfrak{GP}(\lbrace \boldsymbol{g}(t_k) \rbrace, \lbrace \boldsymbol{g}(s_m) \rbrace \mid \theta) \end{cases}$$

Ugly, but not intractable!

Inference Via the Latent History
• Homogeneous Poisson process

$$p(\{t_k\}_{k=1}^{K}, \{s_m\}_{m=1}^{M}, g \mid \lambda^*, \theta) = (\lambda^*)^{K+M} \exp\{-\lambda^* \mu(\mathcal{V})\} \leftarrow \sum_{k=1}^{K} \sigma(g(t_k)) \times \prod_{k=1}^{K} \sigma(g(t_k)) \times \prod_{m=1}^{M} \sigma(-g(s_m)) \times \Im\{g(t_k)\}, \{g(s_m)\} \mid \theta)$$

Inference Via the Latent History Homogeneous Poisson process Probability of unthinned events $p(\{t_k\}_{k=1}^K, \{s_m\}_{m=1}^M, g \mid \lambda^*, \theta) =$ $(\lambda^{\star})^{K+M} \exp\left\{-\lambda^{\star}\mu(\mathcal{V})\right\}$ $\times \prod_{k=1}^{K} \sigma(g(t_k)) \Leftarrow$ $\times \prod_{m=1}^{M} \sigma(-g(s_m))$ $\times \ \mathcal{GP}(\{g(t_k)\}, \{g(s_m)\} | \theta))$

Inference Via the Latent History

- Homogeneous Poisson process
- Probability of unthinned events
- Probability of thinned events

$$p(\lbrace t_k \rbrace_{k=1}^{K}, \lbrace s_m \rbrace_{m=1}^{M}, \boldsymbol{g} \mid \lambda^{\star}, \theta) =$$

$$(\lambda^{\star})^{K+M} \exp \{-\lambda^{\star} \mu(\mathcal{V})\}$$

$$\times \prod_{k=1}^{K} \sigma(\boldsymbol{g}(t_k))$$

$$\times \prod_{m=1}^{M} \sigma(-\boldsymbol{g}(s_m)) \boldsymbol{\leftarrow}$$

$$\times \mathcal{GP}(\lbrace \boldsymbol{g}(t_k) \rbrace, \lbrace \boldsymbol{g}(s_m) \rbrace \mid \theta)$$

Inference Via the Latent History

- Homogeneous Poisson process
- Probability of unthinned events
- Probability of thinned events
- Gaussian process prior

$$p(\lbrace t_k \rbrace_{k=1}^{K}, \lbrace s_m \rbrace_{m=1}^{M}, \boldsymbol{g} \mid \lambda^*, \theta) = \\ (\lambda^*)^{K+M} \exp\{-\lambda^* \mu(\mathcal{V})\} \\ \times \prod_{k=1}^{K} \sigma(\boldsymbol{g}(t_k)) \\ \times \prod_{m=1}^{M} \sigma(-\boldsymbol{g}(s_m)) \\ \times \Im \mathcal{P}(\lbrace \boldsymbol{g}(t_k) \rbrace, \lbrace \boldsymbol{g}(s_m) \rbrace \mid \theta) \end{cases}$$

Overview of the MCMC Sampler

We update each part of the latent state separately, conditioned on the others using a Gibbs-like procedure.

- Insert and remove latent thinned events via Metropolis–Hastings
- Move latent thinned events around via Metropolis–Hastings
- Sample the latent function via Hamiltonian Monte Carlo.

Also: hyperparameters of the GP, and λ^{\star} .

Inserting/Removing Latent Events Birth Proposal

- Also propose a location \hat{s} uniformly in \mathcal{V} .
- Draw $g(\hat{s})$ conditionally from the GP.

$$m{a}_{ ext{ins}} = rac{\mu(\mathcal{V})\,\lambda^{\star}}{(M+1)}\sigma(-m{g}(\hat{m{s}}))$$

Death Proposal

• Pick one of the *M* at random. $a_{del} = \frac{M}{\mu(\mathcal{V}) \lambda^{\star}} \sigma(-g(s_m))^{-1}$

Moving Latent Events Around

- Iterate over each of the *M* events.
- Use a proposal distribution $q(\hat{s} \leftarrow s)$.
- Draw $g(\hat{s})$ conditionall from th GP.
- Accept with M-H ratio:

$$m{a}_{\textit{loc}} = rac{q(m{s}_m \leftarrow \hat{m{s}}_m) \, \sigma(-g(\hat{m{s}}_m))}{q(\hat{m{s}}_m \leftarrow m{s}_m) \, \sigma(-g(m{s}_m))}$$

Updating the Latent Function

- The GP prior enforces a lot of structure.
- Use Hamiltonian Monte Carlo for efficiency.
- Uses gradients to reduce random walk behavior.

$$p(\boldsymbol{g} | \{t_k\}_{k=1}^{K}, \{\boldsymbol{s}_m\}_{m=1}^{M}, \lambda^*, \theta) \propto$$

$$\mathfrak{GP}(\{\boldsymbol{g}(t_k)\}, \{\boldsymbol{g}(\boldsymbol{s}_m)\} | \{t_k\}_{k=1}^{K}, \{\boldsymbol{s}_m\}_{m=1}^{M}, \theta)$$

$$\times \prod_{k=1}^{K} \sigma(\boldsymbol{g}(t_k)) \prod_{m=1}^{M} \sigma(-\boldsymbol{g}(\boldsymbol{s}_m))$$

Updating Hyperparameters

GP Hyperparameters

Conditioned on the latent events and the latent function, just use the marginal likelihood.

Dominating Intensity Hyperparameters Treat the union of observations and latent events as a parametric Poisson model. For the version with constant λ^* , a gamma prior is conjugate:

$$\alpha = \alpha_0 + \mathbf{K} + \mathbf{M}$$
$$\beta = \beta_0 + \mu(\mathcal{V})$$

Empirical Evaluations

Synthetic Data

- Three known intensity functions.
- One training set, ten held-out test sets.
- Evaluated ℓ_2 norm and predictive logprob.
- Compared to kernel smoothing and LGCP.

Real-World Data

- Coal mining disasters in the UK, 1875-1962.
- Redwood forest data, scaled to unit square.

Synthetic Data Set 1

 $\lambda_1(s) = 2 \exp\{-s/15\} + \exp\{-((s-25)/10)^2\}$ on [0,50]

Synthetic Data Set 1

 $\lambda_1(s) = 2 \exp\{-s/15\} + \exp\{-((s-25)/10)^2\}$ on [0,50]

$\lambda_1(s) = 2 \exp\{-s/15\} + \exp\{-((s-25)/10)^2\}$ on [0,50]

$$\lambda_2({m s})=5\sin({m s}^2){+}6$$
 on $[0,5]$

$$\lambda_2({m s})=5\sin({m s}^2){+}6$$
 on $[0,5]$

$$\lambda_2({m s})=5\sin({m s}^2){+}6$$
 on $[0,5]$

Piecewise linear on [0, 100]

Piecewise linear on [0, 100]

Piecewise linear on [0, 100]

Coal Mining Disaster Data

- Coal mine disasters in UK between 1851 and 1962.
- 191 accidents.
- Commonly studied in changepoint models.
- Good example of a nonstationary Poisson process.

Only a "disaster" if ten or more people killed!

Coal Mining Disaster Data

191 events between 15 March 1851 and 22 March 1962

Year

Coal Mining Disaster Data

191 events between 15 March 1851 and 22 March 1962

Redwoods

195 trees, scaled to the unit square

Redwoods

Histogram of locations of thinned events

Outline

The Poisson Process

The Gaussian Process

The Sigmoidal Gaussian Cox Process

Inference with the SGCP

Extensions

Summary

Extended Point Processes

Marking

Additional random data associated with events.

 Example: random city locations each with random population

Interaction: Clustering

Points like to be closer together than Poisson.

• Example: Plants germinate via seeds.

Interaction: Repulsion

Points like to be farther apart than Poisson.

Example: Neurons have refractory periods.

Marked Poisson Processes

Marked Poisson Processes

The Boolean Model

The Boolean Model

Interacting Point Processes

If the process is defined as a generative procedure, we can extend the SGCP directly to simulate data from it.

Contrast with general Gibbs/Markov point processes (e.g. Strauss process), where interaction is defined in terms of a potential function.

The Neyman–Scott Process aka "The Matérn Cluster Process"

The Neyman–Scott Process aka "The Thomas Process"

The Matérn Type III Process

Outline

The Poisson Process

The Gaussian Process

The Sigmoidal Gaussian Cox Process

Inference with the SGCP

Extensions

Summary

Summary

- The Poisson process is useful.
- ▶ NP Bayesian inference would be nice.
- GP priors on intensity functions have been intractable.
- Our construction uses a generative model to avoid intractability.
- ► The method is competitive in practice.
- The method can be extended to other point processes.
- **Bad News**: $O(N^3)$ scaling from GP.

Thanks

- Iain Murray (Toronto)
- David MacKay (Cambridge)
- Radford Neal (Toronto)
- Zoubin Ghahramani (Cambridge/CMU)
- Maneesh Sahani (Gatsby)

Funded by the Gates Cambridge Trust.