Dynamic portfolio management with transaction costs

Alberto Suárez^{1,2}, John Moody², Matthew Saffell²
(1) Computer Science Department Universidad Autónoma de Madrid
(2) International Computer Science Institute, Berkeley

Objectives and methodology

- To design goal-directed agents that learn to discover risk-averse strategies in a non-stationary environment with high levels of uncertainty.
- Reinforcement learning: learn through trial and error exploration with only limited feedback.
- Direct Reinforcement (DR), or policy gradient methods enable an agent to discover useful strategies without the need to learn a value function.
- Apply the methods developed to an economically important problem: dynamic portfolio management.

Dynamic portfolio management

- Allocate an initial budget among different risky assets.
- The evolution of the asset prices is **uncertain**.
 - Difficult to forecast (efficient market hypothesis)
 - Non-stationary.
- Multi-period investment problem: The portfolio can be rebalanced by trading assets at fixed, regularly spaced, times, according to a management strategy.
- Assets can be bought and sold in arbitrary quantities at the posted price (no market impact).
- There are **transaction costs** [0.5 2 %].

GOAL: Design good self-financing strategies.

Experiments

- Data: Monthly Gross index (total returns without taxes in US \$) December 31, 1969 - may 29, 2009 [474 months]
- Source: MSCI <u>http://www.msci.com/</u>
 - Europe: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom
 - **North America**: Canada, USA
 - Pacific: Australia, Hong kong, Japan, New Zealand, Singapore
 - **The world index**: Europe + North America + Pacific

Time series of asset prices

$$S_0^{(i)}, S_1^{(i)}, S_2^{(i)}, \dots, S_N^{(i)}; \qquad i = 1, 2, \dots, m$$
$$S_n^{(i)} \equiv S^{(i)}(t_n); \quad t_n = n\Delta T, \quad n = 1, 2, \dots, N; \quad T = N\Delta T.$$

E.g. MSCI Gross index (total returns without taxes in US \$) from December 31, 1969 to May 29, 2009, $\Delta T = 1$ month

Dynamic portfolio management

Time series of returns

$$r_{1}^{(i)}, r_{2}^{(i)}, \dots, r_{N}^{(i)}; \quad i = 1, 2, \dots, m$$

$$r_{n}^{(i)} \equiv \frac{S_{n}^{(i)} - S_{n-1}^{(i)}}{S_{n-1}^{(i)}} \quad n = 1, 2, \dots, N$$

$$S_{n}^{(i)} = S_{n-1}^{(i)} \left(1 + r_{n}^{(i)}\right) \implies$$

$$S_{n}^{(i)} = S_{0}^{(i)} \prod_{i=1}^{n} \left(1 + r_{n}^{(i)}\right)$$

Time-series for returns are

- Quasi-stationary
- Short-time memory
- Heteroskedastic

Initial portfolio

- Assume we have an initial capital P_0 .
- Allocate this capital among the *m* assets:

Portfolio composition :

$$\left\{c_{0}^{(i)}\right\}_{i=1}^{m}; \qquad \sum_{i=1}^{m} c_{0}^{(i)} S_{0}^{(i)} = P_{0}$$

Portfolio weights:

$$\{F_0^{(i)}\}_{i=1}^m; \qquad F_0^{(i)} = \frac{C_0^{(i)}S_0^{(i)}}{P_0}$$
$$\sum_{i=1}^m F_0^{(i)} = 1$$

Passive management: Market capitalization

• The composition of the portfolio is held constant $[t_0, t_N]$

Portfolio value:

$$P_{n} = \sum_{i=1}^{m} c_{0}^{(i)} S_{n}^{(i)} = P_{0} \sum_{i=1}^{m} F_{0}^{(i)} \frac{S_{n}^{(i)}}{S_{0}^{(i)}};$$

$$n = 1, 2, \dots, N$$

Portfolio weights:

Time (in months)

Active management (no transaction costs)

• The composition of the portfolio is held constant in $[t_{n-1}, t_n)$

$$t = t_{n-1}: P_{n-1} = \sum_{i=1}^{m} c_{n-1}^{(i)} S_{n-1}^{(i)}$$
Market capitalization
$$t = t_{n}^{-}: P_{n} = \sum_{i=1}^{m} c_{n-1}^{(i)} S_{n}^{(i)}; \quad \widetilde{F}_{n}^{(i)} = \frac{c_{n-1}^{(i)} S_{n}^{(i)}}{P_{n}} = \frac{F_{n-1}^{(i)} (1 + r_{n}^{(i)})}{\sum_{j=1}^{m} F_{n-1}^{(j)} (1 + r_{n}^{(j)})}; \quad \sum_{j=1}^{M} \widetilde{F}_{n}^{(j)} = 1$$
The portfolio is rebalanced at t_{n}

$$t = t_{n} \quad \{c_{n-1}^{(i)}; i = 1, 2, ..., m\} \Rightarrow \{c_{n}^{(i)}; i = 1, 2, ..., m\}$$
Portfolio
$$P_{n} = \sum_{i=1}^{m} c_{n-1}^{(i)} S_{n}^{(i)} = \sum_{i=1}^{m} c_{n}^{(i)} S_{n}^{(i)}; \quad F_{n}^{(i)} = \frac{c_{n}^{(i)} S_{n}^{(i)}}{P_{n}} \qquad \sum_{j=1}^{M} F_{n}^{(j)} = 1$$
Budget constraint
Dynamic portfolio management

9

Portfolio value (without transaction costs)

 Value of the portfolio at t_n $P_n = P_{n-1}(1+r_n); \qquad n = 1,2,...,N$ with
 $r_n = \sum_{i=1}^m F_{n-1}^{(i)} r_n^{(i)}$ Value of the portfolio at t_N = T

$$P_N = P_0 \prod_{n=1}^N \left(1 + r_n \right)$$

Portfolio value (with transaction costs)

Recurrent RL architecture (without transaction costs)

Recurrent RL architecture (with transaction costs)

RRL architecture (without transaction costs)

- Use a softmax representation for the portfolio weights
 - Inputs:
 - Non-recurrent: Constant bias term (1) + exogenous variables: \underline{I}_n
 - Recurrent (delay 1): Delayed values of the portfolio weights updated by market capitalization
 - Outputs: Portfolio weights

$$\mathbf{w}^{(i)} \equiv \begin{bmatrix} \theta_0^{(i)} & \mathbf{\theta}^{(i)} & \mathbf{\xi}^{(i)} \end{bmatrix}$$

$$f_n^{(i)} \left(\widetilde{\mathbf{F}}_n, \mathbf{I}_n; \mathbf{w}^{(i)} \right) = \theta_0^{(i)} + \mathbf{\theta}^{(i)} \cdot \mathbf{I}_n + \mathbf{\xi}^{(i)} \cdot \widetilde{\mathbf{F}}_n; \quad i = 1, 2, ..., m.$$

$$F_n^{(i)} = \operatorname{softmax} \left[\mathbf{f}_n \left(\widetilde{\mathbf{F}}_n, \mathbf{I}_n; \mathbf{w} \right) \right] = \frac{\exp \left\{ f_n^{(i)} \left(\widetilde{\mathbf{F}}_n, \mathbf{I}_n; \mathbf{w}^{(i)} \right) \right\}}{\sum_{j=1}^m \exp \left\{ f_n^{(j)} \left(\widetilde{\mathbf{F}}_n, \mathbf{I}_n; \mathbf{w}^{(j)} \right) \right\}}; \quad \sum_{i=1}^m F_n^{(i)} = 1$$

RRL architecture (with transaction costs)

Use regularization hyperparameter $0 \le \lambda \le 1$

$$\mathbf{F}_{n} = \lambda \widetilde{\mathbf{F}}_{n} + (1 - \lambda) \mathbf{F}_{n}^{(E)}$$

$$\widetilde{\mathbf{F}}_{n} = \text{current portfolio weights}$$

$$\mathbf{F}_{n}^{(E)} = \text{softmax} \left[\mathbf{f}_{n} (\widetilde{\mathbf{F}}_{n}, \mathbf{I}_{n}; \mathbf{w}) \right]$$

 $\lambda = 1$ Buy and hold strategy

 $\lambda = 0$ Use the recommendation of the softmax network ignoring the composition of the current portfolio

Measures of performance: Portfolio value

• Learning parameter ρ

$$P_{n} = P_{n-1}(1+\hat{r}_{n})$$

$$(1+\hat{r}_{n}) = \left(1+\sum_{i=1}^{m} F_{n-1}^{(i)} r_{n}^{(i)}\right) \left(1-\delta \sum_{i=1}^{m} \left|F_{n}^{(i)}-\widetilde{F}_{n}^{(i)}\right|\right); \quad \widetilde{F}_{n}^{(i)} = \frac{F_{n-1}^{(i)}(1+r_{n}^{(i)})}{\sum_{j=1}^{m} F_{n-1}^{(j)}(1+r_{n}^{(j)})};$$

$$\max[P_{n} \mid P_{n-1}] = \max[\hat{r}_{n}] \implies \qquad \mathbf{w}_{n+1} = \mathbf{w}_{n} + \rho \frac{d\hat{r}_{n}}{d\mathbf{w}}\Big|_{\mathbf{w}=\mathbf{w}_{n}};$$

$$\operatorname{Needs} \quad \frac{d\mathbf{F}_{n-1}}{d\mathbf{w}}; \frac{d\mathbf{F}_{n}}{d\mathbf{w}} \quad (\operatorname{Recurrent learning})$$

Measures of risk

 Measures of risk: stdev, Semideviation, VaR, ShortFall (conditional VaR), etc.

Dynamic portfolio management

Balancing risk and performance: Sharpe ratio

• The Sharpe ratio is a risk-adjusted measure of performance.

$$SR = \frac{E[\hat{r}_n]}{stdev[\hat{r}_n]}$$

• For online optimization it is preferable to use the differential Sharpe-ratio

Exponential moving average Sharpe ratio

Running average SR

$$A_{n} = \frac{1}{n} \sum_{k=1}^{n} \hat{r}_{n}; \qquad A_{n} = \frac{1}{n} \hat{r}_{n} + \frac{n-1}{n} A_{n-1}$$
$$B_{n} = \frac{1}{n} \sum_{k=1}^{n} \hat{r}_{n}^{2}; \qquad B_{n} = \frac{1}{n} \hat{r}_{n}^{2} + \frac{n-1}{n} B_{n-1}$$

$$SR_n = \frac{A_n}{K_n \left(B_n - A_n^2\right)}; \qquad K_n = \left(\frac{n}{n-1}\right)$$

Exponential moving average SR

$$A_{n} = \eta \hat{r}_{n} + (1 - \eta) A_{n-1}; \qquad B_{n} = \eta \hat{r}_{n}^{2} + (1 - \eta) B_{n}$$
$$SR_{n} = \frac{A_{n}}{K_{\eta} (B_{n} - A_{n}^{2})}; \qquad K_{\eta} = \left(\frac{1 - \eta/2}{1 - \eta}\right)^{1/2}; \qquad \eta \to 0^{+}$$

Differential Sharpe ratio

Maximizing the Differential Sharpe ratio

$$D_{n} = \frac{dSR_{n}}{d\eta}\Big|_{\eta=0} = \frac{B_{n-1}(\hat{r}_{n} - A_{n-1}) - \frac{1}{2}A_{n-1}(\hat{r}_{n}^{2} - A_{n-1})}{(B_{n-1} - A_{n-1}^{2})^{3/2}};$$

$$\frac{dD_{n}}{d\mathbf{W}} = \frac{dD_{n}}{d\hat{r}_{n}}\frac{d\hat{r}_{n}}{d\mathbf{W}} = \frac{B_{n-1} - A_{n-1}\hat{r}_{n}}{(B_{n-1} - A_{n-1}^{2})^{3/2}}\frac{d\hat{r}_{n}}{d\mathbf{W}}$$

$$\mathbf{W}_{n+1} = \mathbf{W}_{n} + \rho \frac{dD_{n}}{d\mathbf{W}}\Big|_{\mathbf{W}=\mathbf{W}_{n}} = \mathbf{W}_{n} + \rho \frac{B_{n-1} - A_{n-1}\hat{r}_{n}}{(B_{n-1} - A_{n-1}^{2})^{3/2}}\frac{d\hat{r}_{n}}{d\mathbf{W}}\Big|_{\mathbf{W}=\mathbf{W}_{n}}$$

Learning protocol

Input indicators

Delayed moving averages for [3 6 12 24] months

Training / testing for RRL

{1} Learn weights in window: $[t_n-t_{Learn}, t_n-1];$

{2} Test on single point: t_n

- Optimize either the portfolio value or the differential Sharpe ratio.
- Fix the values of the differential Sharpe-ratio parameter η , of the learning parameter ρ and of the regularization parameter λ by cross-validation.
- Learn the policy using $t_{Learn} = 120$ months (10 years).
- Use 2/3 of the data (training set = 80 points) for weight optimization and 1/3 of the data (validation set = 40 points) for early stopping.
- Average the output of 10 networks trained on different random partitions of the data available for learning into training and validation sets.

Results (without costs)

Performance on the last 220 months

Profit

RRL:3.6710Markowitz :3.2559Market:3.0001

Sharpe ratioRRL:0.5506Markowitz:0.5092Market:0.4773

Results (with costs)

Performance on the last 220 months

 Profit

 RRL:
 3.2120

 Markowitz :
 2.7349

 Market:
 3.0001

Sharpe ratioRRL:0.4969Markowitz:0.4459Market:0.4773

Conclusions (I)

Without transaction costs

- It is possible to discover active management strategies that outperform the market.
- Most of these strategies exhibit switching behavior, which is undesirable from the point of view of robustness and stability.
- The frequent and large transfers of capital among assets makes it difficult to implement the investment policy.

With transaction costs

- It is **more difficult** to design strategies that beat the market portfolio
- It is important to use a **combined strategy** that uses
 - A pool of learned strategies (recurrent reinforcement learning)
 - A **reference strategy** with a sufficiently good performance We have used passive management as a reference.
 - Can other strategies be used (e.g. log-optimal, based on forecasts, etc.)?
 - Investment policies are **smooth** (easier to manage) & **more diversified**
- More domain-specific information is needed to design successful strategies!

Conclusions (II)

- Recurrent Reinforcement Learning (RRL) provides a computationally efficient solution to the problem of dynamic financial asset allocation
 - RRL is an adaptive policy search algorithm that can learn a strategy on-line in a non-stationary environment that is uncertain and/or risky.
 - It is not based on forecasts and does not require learning a value function.
 - Optimization of risk-adjusted measures of performance (e.g. Sharpe ratio).
 - Takes into account transaction costs.
- The **investment strategies** discovered by the **Direct Reinforcement Agent** are
 - Interpretable and robust.
 - Well-diversified.
 - Avoid switching-behavior.
- The methods developed can be employed in other areas of application characterized by large uncertainty and a changing environment, in which a risk-averse behavior is desirable: design of policies (e.g. energy), robotics, autonomous vehicles, industrial control, telecommunications, etc.