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Index Tracking
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DAX assets returns

0 50 100 150 200 250 300
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

cu
m

ul
at

at
iv

e 
re

tu
rn

s

DAX index returns

◮ The index, Y , is a weighted sum of its constituent assets, X

◮ Aim to minimize the variance of the error between the index
returns and our portfolio returns

◮ Find the most predictive subset of X and assign weights, β

◮ The most predictive subset of X and the weights will change
over time

◮ Ignore costs and constraints for now



The Problem

◮ The data:

- Input streams (asset returns): X ∈ R
n×p

- Response streams (index returns): Y ∈ R
n×q

observations arrive one at a time, sequentially.

◮ Y = Xβ + E

◮ p is often large with many correlated variables so we want to
reduce dimensionality of X to R < p

◮ Objective: Predict Y using a subset of X so that tracking
error is minimized

◮ Do this efficiently on-line



Singular Value Decomposition (SVD)

◮ Decompose X into three matrices:

X = UDV T

◮ U = [u(1), .., u(n)] ∈ R
n×n and V = [v (1), ..., v (p)] ∈ R

p×p are
orthonormal and eigenvectors of XXT and XTX respectively

◮ D ∈ R
n×p is diagonal and the square root eigenvalues of XTX

◮ Low rank approximation property:
∑r

i=1 u(i)d (i)v (i) is the
best rank-r approximation of X



Principal Components Analysis (PCA)

◮ Find orthogonal basis vectors which maximize covariance of
data.

◮ Compute eigenvectors of C = XTX (i.e. singular vectors of
X ).

◮ Project X into R-dimensional space spanned by [v (1), ..., v (R)].

◮ Use in index tracking: First PC captures the market factor

Alexander and Dimitriu (2005) .

◮ But - PCA assumes large variances are more important.
Doesn’t take into account the response.



Partial Least Squares Regression (PLS)

◮ Dimensionality reduction and regression
◮ Assume data and response depend on a small number of

latent factors, S
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X =

R∑

r=1

s(r)b(r)T + E , Y =

R∑

r=1

s(r)w (r)T + F

◮ Y=XVW+G
◮ s=Xv - Find weights, v s.t.

max
‖v‖=1

[cov(Xv , Y )]2



PLS

◮ v (1) is the largest eigenvector of XTYY TX

◮ Many algorithms/variations exist. Mainly in Chemometrics
literature.

◮ Limited by rank(Y ). Must perform R separate SVD

computations to obtain [v (1), ..., v (R)]

◮ Solution: add ridge term to make H full rank:

H = αXTX + (1 − α)XTYY TX (α ∼ 10−5)

◮ We can now extract up to rank(X ) latent factors with one
SVD Gidskehaug et al. (2004)



LASSO (Tibshirani, 1996)

◮ Penalize L1 norm of regression coefficients

β̂ = min
β

‖Y − Xβ‖2 + γ

p∑

i=1

|βi |

◮ Large enough γ results in a sparse solution

◮ Numerous efficient algorithms: LARS, Coordinate descent

◮ βlasso
i = sign(βi )(|βi | − γ)+ - Soft threshold

◮ Sparse portfolios Brodie et al. (2008)



Regularized SVD

◮ Reformulate PCA eigenvector problem as regression Shen and Huang

(2008), Witten et al. (2009)

min
ũ,ṽ

‖X − ũṽ‖2
F

◮ Solve using SVD of X , ũ = u(1)d (1), ṽ = v (1)

◮ Now apply penalty to ṽ

min
ũ,ṽ

‖X − ũṽ‖2
F + pγ(ṽ)

◮ Our choice of penalty is pγ(ṽ) = γ
∑p

i=1 |ṽi | but could use a
different penalty

◮ Solve the LASSO by iteratively applying
v lasso
i = sign(ṽi )(|ṽi | − γ)+



Sparse PLS

◮ We can apply this method to obtain Sparse PLS

min
ũ,ṽ

‖H − ũṽ‖2
F + γ

p∑

i=1

‖ṽi‖

◮ Solve using SVD of H, ũ = u(1)d (1), ṽ = v (1) and apply soft
threshold iteratively as before

◮ Sparse PLS weight vectors lead to sparse PLS regression
coefficients



Solving PLS online

◮ Solving PCA online is easy: RLS techniques (Yang, 1995), SVD
updating (Levy and Lindenbaum, 2000)

◮ For PLS we need to find and incrementally update
eigenvectors of

H = αXTX + (1 − α)XTYY TX

◮ Can’t use RLS or most common SVD updating algorithms

◮ Our solution - use Adaptive SIM: Adaptive generalization of
power method for finding eigenvectors (Erlich and Yao, 1994)



Incremental Sparse PLS (iS-PLS)

1. For each data pair (xt , yt)

- update Ct and Mt

Ct = λtCt−1 + xT
t xt Mt = λtMt + xT

t yt

0 ≤ λt ≤ 1 is an adaptive forgetting factor
- update Ht

Ht = αCt + (1 − α)MtM
T
t

2. Update eigenvectors of Ht by performing one SIM iteration

3. Soft threshold the updated eigenvectors

4. Recompute sparse PLS parameters (latent factors, y-loading
vectors, regression coefficients)



Adaptive Forgetting

◮ Consider residual errors:

- a priori error: et = yt − xtβt−1

- a posteriori error: ǫt = yt − xtβt

◮ Update forgetting factor based on difference between the error
variances (Paleologu et al., 2008) :

λt =
σqσǫ

σe − σǫ

qt = xtC
−1
t xT

t

◮ Slowly changing data - Small difference between prior and
posterior error - λt ≈ 1

◮ Quickly changing data - Large difference between prior and
posterior error - λt << 1



Simulation Results

◮ Generate 3 factors as AR(1) processes:

Ft,j = δjFt−1,j + ǫt,j for t = 2, . . . , 400

- δj = [0.1, 0.4, 0.2], ǫj ∼ N (µj , 3.52)

◮ Each input variable is generated as

xt,i = Ft,j + ηt ηt ∼ N (0, 1)

- Each variable only depends on one factor

Simulated pattern with three hidden factors
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Simulation Results
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Estimated pattern with PLS Component 1
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Estimated pattern with PLS Component 2

time

se
le

ct
ed

 s
tr

ea
m

s

50 100 150 200 250 300 350 400

50

100

150

200

250

300
(c)



Simulation Results

◮ Sensitivity averaged over 500 Monte Carlo simulations

iS−PLS with self−tuning λ   −   MSE = 91.94
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◮ Forgetting factor changes in response to the active latent
factors changing.

◮ After a change, solution quickly converges to maximum
sensitivity.



Simulation Results

◮ Mean sensitivity of the iS-PLS algorithm as a function of number of
active variables compared to Recursive LARS Kim et al. (2004) and
Adaptive Lasso Anagnostopoulos et al. (2008).



Application to Bivariate Index Tracking
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◮ Try to overperform S&P 100 returns AND Nikkei returns by
15% annually

◮ 323 available assets - select only 10

◮ Use only the first PLS component

◮ Compare with averaged random portfolio updated using RLS



Application to Bivariate Index Tracking

◮ iS-PLS
portfolio
overperforms
the index
returns by ∼

15%

◮ Random
portfolio
underperforms
the index
returns

◮ Bottom plot
shows the
selected
variables over
time
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Application to Bivariate Index Tracking
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◮ iS-PLS compared with Recursive LARS and Adaptive Lasso in
the same bivariate enhanced index tracking problem.



Summary

◮ Very few approaches to on-line variable selection exist:

- Adaptive Lasso Anagnostopoulos et al. (2008)

- Recursive LARS Kim et al. (2004)

Neither takes into account latent factors

◮ iS-PLS does fast on-line dimensionality reduction and variable
selection

◮ Performs well when data and response depend on latent
factors

◮ But...



Limitations and Future Work

◮ Limitations

- At present we are specifying the number of PLS components
and variables

- Index tracking does not take into account constraints or
transaction costs

◮ Future Work

- Automatic model selection - online cross validation Vijayakumar

et al. (2005)

- Realistic index tracking - nonnegativity and inequality
constraints?

- Minimize transaction costs - coefficients smooth over
time?
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