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Introduction to copulas

Copulas and Computational Finance

An important problem in Computational Finance is the modeling
of the multivariate distribution of the returns generated by
different financial assets. However,

Many standard univariate models do not have a direct extension to
higher dimensions.

To deal with this problem we can...

Use copulas to link univariate models into a joint multidimensional
model.




Introduction to copulas

Definition of a copula function

Sklar’'s Theorem

Let (X1,...,Xg)T ~ F. Then there is a unique copula C such that
F(X]_,...,Xd) = C[Fl(Xl),...,Fd(Xd)] s (1)

where F1,..., F4 are the marginal distributions of F.

© C is a distribution in the d-dimensional unit hypercube with
uniform marginals.

© C captures the dependence structure among the different
univariate components.

The estimation of F can be performed by first, modeling the
marginals F1, ..., Fy and second, by modeling the copula C.




Introduction to copulas

Eliminating the marginals

Transforming the data using the marginals leads to a sample from
the copula of the original distribution.
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Introduction to copulas

Eliminating the marginals (continued)

Transforming the data using the marginals leads to a sample from
the copula of the original distribution.

10

il

Mixture

T

Exponential

Left, sample form F.

0.2 0.4 0.6 0.8 1.0

0.0

Uniform

Uniform

Right, sample from C.



Introduction to copulas

Some bivariate copula functions

Independent Copula Very Dependent Copula
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Introduction to copulas

Some bivariate copula densities

Independent Copula Density Very Dependent Copula Density
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Parametric, non-parametric and semiparametric copulas

Modeling multivariate data with copulas requires copula functions
that are flexible and robust at the same time.

@ Parametric copula models are robust but they lack flexibility.

@ Non-parametric copula models can represent any dependence
structure but they are prone to overfitting.

>

Solution: semiparametric copula models

@ We focus in the family of bivariate Archimedean copulas.

@ These copulas are parameterized in terms of a latent
unidimensional function.

@ Our approach describes this latent function in a
non-parametric manner.
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Semiparametric Archimedean copulas

Bivariate Archimedean copulas

are defined by a generator ¢~ ' : [0,1] — R* U {400} that is convex, strictly
decreasing and satisfies ¢~1(0) = 400 and ¢~ (1) = 0. Given ¢~ ", the copula

function is

Cluv)=¢ s W +67 )], uwvel]

where ¢ is the inverse of ¢~

Generator of an Archimedean Copula

Archimedean Copula Function

(2)

Archimedean Copula Density
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Semiparametric Archimedean copulas

Parameterizations of Bivariate Archimedean copulas

¢~ is a very constrained function. For this reason, we introduce a
novel latent function g : R — R that is in a one-to-one
relationship with ¢! and is easier to model

o o)
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where ¢ is the sigmoid function. Asymptotically, g behaves like a
linear function.
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Semiparametric Archimedean copulas

Some plots of g for parametric Archimedean copulas

g has a central non-linear reagion.

Clayton Copula

Gumbel Copula

Frank Copula
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T is a measure of non-linear dependence.
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Semiparametric Archimedean copulas

Modeling g

We model g by means of a natural cubic spline basis:

K
go(x) = Ze,-/v,-(x). (5)
where 6 = (01, ...,0k).

Example of a Set of Basis Functions
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Semiparametric Archimedean copulas

Estimation of g

Given D = {U,, \/,-},N:1 where U;, Vi ~ U(0,1), we estimate g as
the maximizer of

PLL(D|go, ) = log L(D|gs) — / (@) dx (6)

where 3 is a smoothing parameter fixed by a 10-fold cross
validation grid search.
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Experiments with financial data

The data

@ 64 components of the Dow Jones Composite Index.
@ Daily log-returns From April 13th, 2000 to March 31st, 2008.

@ We obtain 64 time series with 2000 consecutive log-returns.
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Experiments with financial data

Modeling the marginal distributions

We use an asymmetric GARCH process with an autoregressive
component and innovations that follow an unspecified density.

Xt = ¢o + 1 Xe—1 + 0tEt, (7)
/f+04(’Ut—15t—1| _VUt—15t—1) + Bot-1, (8)

Ot

where kK >0, a, >0, =1 <~,¢1 <1, et ~ f and f has zero
mean and unit standard deviation.

Once we have a marginal model for each financial asset, we map
each return to [0,1] using the probability integral transform.
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Experiments with financial data

Benchmark copula estimation methods

SPAC The method that is described here.
LAM A flexible Archimedean copula [Lambert, 2007].

DIM A flexible Archimedean copula [Dimitrova et al.,
2008].

GK' A non-parametric copula based on Gaussian kernels.
BMG A method based on a Bayesian mixture of Gaussians.
ST The Student's t copula model.
GC The Gaussian copula model.
SST The skewed Student’s t copula model.
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Experiments with financial data

Experimental protocol

© We form 32 pairs of financial assets and obtain 32 samples of
size 2000 from the corresponding bivariate copulas.

@ Each copula sample is randomly split in 100 pairs of
independent train and test sets with 1333 and 667 instances,
respectively.

© The copula estimation method is applied to each train set and
its log-likelihood is evaluated on the corresponding test set.

© For each of the 32 pairs of financial assets, we compute the
average test log-likelihood of the copula estimate.
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Average log-likelihood for each method on each problem

Red

Blue

Green

Ist

method.

ssets
WMB WMT 597 647 638 472 278 297 466 -08I
KO LSTR 1390 1196 11.08 11.90 12.26 10.82 11.69 7.52
FDX FE 1435 13.43 12.73 1245 11.07 11.16 13.31 6.09
CHRW CNP 15.63 12.95 12.82 13.09 14.19 13.28 13.33 9.04
EXC EXPD 1541 1598 1544 14.05 14.18 12.77 14.01 9.89
PEG PFE 17.80 17.77 17.80 15.10 14.58 14.80 16.02 10.44
0SG  PCG 17.90 16.37 17.57 16.20 16.84 15.86 15.80 13.18
LUV  MCD 18.21 17.66 17.47 17.15 16.38 16.11 17.14 13.22
DIS DUK 18.84 20.99 20.30 17.25 17.27 15.60 18.10 12.84
NI NSC 20.66 20.43 19.50 18.70 19.52 17.69 18.67 14.99
AES AIG 21.71 21.84 2153 20.28 19.66 19.58 20.22 15.40
PG R 22.89 23.46 22.80 20.24 20.14 20.10 21.76 16.76
FPL  GE 23.33 23.26 23.10 20.12 20.24 19.68 21.78 17.16
AA AEP 23.66 23.28 23.33 22.36 21.67 21.31 22.11 16.52
SO T 23.88 23.54 2419 21.12 2218 21.58 22.91 15.58
XOM YRCW 2483 2353 2324 2236 2241 22.28 22.44 16.05
MRK MSFT 25.65 2450 23.69 22.81 22.39 20.71 24.02 20.16
MMM MO 24.93 2490 24.10 2457 2257 21.57 24.04 19.81
D DD 26.37 26.35 2597 24.90 24.35 23.95 24.57 17.25
JNJ JPM 27.19 29.38 29.31 23.00 24.65 24.11 28.82 24.38
ALEX AMR 29.87 28.75 28.76 28.97 27.62 27.04 28.57 23.56
UTX VZ 33.88 33.25 32.21 33.11 30.98 31.06 32.48 24.15
CAL  CAT 35.23 35.43 3555 31.31 34.10 34.18 33.41 25.96
INTC JBHT 4422 4290 42.77 41.09 4258 41.11 42.00 42.06
GM GMT 45.21 4452 4420 41.60 43.57 43.22 44.33 41.87
AXP  BA 52.06 50.03 51.47 47.40 50.86 50.23 49.96 46.07
HD HON 56.84 57.17 56.13 52.55 55.30 54.36 54.69 47.07
BNI C 61.36 60.55 60.43 58.39 60.25 58.34 58.58 55.56
CNW  CSX 80.36 80.59 80.09 7593 79.19 77.24 77.65 71.23
UNP  UPS 80.86 80.63 79.90 75.21 79.38 78.49 78.72 74.53
HPQ IBM 89.44 90.05 89.27 82.27 87.64 85.35 88.37 79.22
ED EIX 93.15 90.99 93.26 86.71 91.97 89.84 93.23 88.80
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Some copula density estimates
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SPAC Copula Density Estimate for CHRW-CNP
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In
Semiparametric Ar
Experiments

Summary

)

We have proposed a novel estimator of semiparametric
bivariate Archimedean copulas.

@ The estimator is based on a new function g that uniquely
determines the copula and is easy to model.

@ A basis of natural cubic splines is used to model g in a
non-parametric manner.

@ Estimation is performed by maximum penalized likelihood.

@ Experimental results show the improved performance of the
proposed estimator with respect ot other benchmark methods.

@ Accurate multivariate financial models must capture
asymmetric dependence structures.
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Thanks!
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