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Outline

 Motivation of structured sparsity

 more priors improve the model selection stability

 Generalizing group sparsity: structured sparsity

 CS: structured RIP requires fewer samples

 statistical estimation: more robust to noise

 examples of structured sparsity: graph sparsity

 An efficient algorithm for structured sparsity

 StructOMP: structured greedy algorithm



Standard Sparsity

 Without priors for supp(w)

 Convex relaxation (L1 regularization), such as Lasso

 Greedy algorithm, such as OMP

 Complexity for k-sparse data O(k ln (p) )

 CS: related with the number of random projections 

 Statistics: related with the 2-norm estimation error

Suppose X the n × p data matrix. Let                                      .

The problem is formulated as



Group Sparsity

 Partition {1, . . . , p}=              into m disjoint groups 

G1,G2, . . . ,Gm. Suppose g groups cover k features

 Priors for supp(w)

 entries in one group are either zeros both or nonzeros both 

 Group complexity: O(k + g ln(m)).

 choosing g out of m groups (g ln(m) ) for feature selection 

complexity (MDL)

 suffer penalty k for estimation with k selected features (AIC)

 Rigid,  none-overlapping group setting



Motivation

 Dimension Effect

 Knowing exact knowledge of supp(w): O(k) complexity

 Lasso finds supp(w) with O(k ln(p) ) complexity

 Group Lasso finds supp(w) with O(g ln(m) ) complexity

 Natural question

 what if we have partial knowledge of supp(w)?

 structured sparsity: not all feature combinations are 

equally likely, graph sparsity

 complexity between k ln(p) and k.

 More knowledge leads to the reduced complexity



Example

 Tree structured sparsity in wavelet compression

 Original image

 Recovery with unstructured sparsity, O(k ln p)

 Recovery with structured sparsity,     O(k)



Related Works (I)

 Bayesian framework for group/tree sparsity

 Wipf&Rao 2007, Ji et al. 2008,  He&Carin 2008

 Empirical evidence and no theoretical results show how much 

better (under what kind of conditions)

 Group Lasso

 Extensive literatures for empirical evidences (Yuan&Lin 2006)

 Theoretical justifications (Bach 2008, Kowalski&Yuan 2008, 

Obozinski et al. 2008, Nardi&Rinaldo 2008, Huang&Zhang 

2009)

 Limitations: 1) inability for more general structure; 2) inability 

for overlapping groups



Related Works (II)

 Composite absolute penalty (CAP) [Zhao et al. 2006]

 Handle overlapping groups; no theory for the effectiveness. 

 Mixed norm penalty [Kowalski&Torresani 2009]

 Structured shrinkage operations to identify the structure maps; 

no additional theoretical justifications

 Model based compressive sensing [Baraniuk et al. 2009]

 Some theoretical results for the case in compressive sensing

 No generic framework to flexibly describe a wide class of 

structures



Our Goal

 Empirical works evidently show better performance 

can be achieved with additional structures

 No general theoretical framework for structured 

sparsity that can quantify its effectiveness

 Goals

 Quantifying structured sparsity;

 Minimal number bounds of measurements required in CS;

 estimation accuracy guarantee under stochastic noise;

 A generic scheme and algorithm to flexible handle a wide 

class of  structured sparsity problems



Structured Sparsity Regularization 

 Quantifying structure

 cl(F): number of binary bits to encode a feature set F;

 Coding complexity: 

 number of samples needed in CS: 

 noise tolerance in learning is 

 Assumption: not all sparse patterns are equally likely

 Optimization problem:



Examples of structured sparsity

 Standard sparsity

 complexity: s=O( k + k log(2p)) (k is sparsity number)

 Group sparsity: nonzeros tend to occur in groups

 complexity: s=O(k + g log(2m))

 Graph sparsity (with O(1) maximum degree)

 if a feature is nonzero, then near-by features are more 

likely to be nonzero. The complexity is s=O(k + g log p), 

where g is number of connected components.

 Random field sparsity: 

 any binary-random field probability distribution over the 

features induce a complexity as −log (probability).



Example: connected region

 A nonzero pixel implies adjacent pixels are more likely 

to be nonzeros

 The complexity is O(k + g ln p) where g is the number 

of connected components

 Practical complexity: O(k) with small g.



Example: hierarchical tree

 Parent nonzero implies children are more likely to be 

nonzeros. 

 Complexity: O(k) instead of O(k ln p)

 Requires parent as a feature if one child is a feature (zero-tree)

 Implication: O(k) projections for wavelet CS



Proof Sketch of Graph Complexity

 Pick a starting point for every connected component

 coding complexity is O(g ln p)

 for tree, start from root with coding complexity 0

 Grow each feature node into adjacent nodes with 

coding complexity O(1)

 require O(k) bits to code k nodes.

 Total is O(k + g ln p)



Solving Structured Sparsity

 Structured sparse eigenvalue condition: for n×p Gaussian 

projection matrix, any t > 0 and                ,  let 

Then with probability at least                : for all vector 

with coding complexity no more than s:



Coding Complexity Regularization

 Coding complexity regularization formulation 

 With probability 1−η, the ε-OPT solution of coding 

complexity regularization satisfies:

 Good theory but computationally inefficient.

 convex relaxation: difficult to apply. In graph sparsity 

example, we need to search through connected components 

(dynamic groups) and penalize each group

 Greedy algorithm, easy



StructOMP

 Repeat:

 Find w to minimize Q(w) in the current feature set

 select a block of features from a predefined “block set”, 

and add to the current feature set

 Block selection rule: compute the gain ratio:

and pick the feature-block to maximize the gain:

 fastest objective value reduction per unit increase of coding 

complexity



Convergence of StructOMP

 Assume structured sparse eigenvalue condition at each 

step

 StructOMP solution achieving OPT(s) +ε :

 Coding complexity regularization:

 for strongly sparse signals (coefficients suddenly drop to zero; 

worst case scenario): solution complexity O(s log(1/ ε)) 

 weakly sparse (coefficients decay to zero) q-compressible 

signals (decay at power q): solution complexity O(qs).



Experiments

 Focusing on graph sparsity

 Demonstrate the advantage of structured sparsity over 

standard/group sparsity. Compare the StructOMP with 

the OMP, Lasso and group Lasso

 The data matrix X are randomly generated with i.i.d 

draws from standard Gaussian distribution

 Quantitative evaluation: the recovery error is defined as 

the relative difference in 2-norm between the estimated 

sparse coefficient and the ground truth



Example: Strongly sparse signal



Example: Weakly sparse signal



Strong vs.Weak Sparsity

Figure. Recovery error vs. Sample size ratio (n/k): a) 1D strong sparse 

signals; (b) 1D Weak sparse signal



2D Image with Graph Sparsity

Figure. Recovery results of a 2D gray image: 

(a) original gray image, (b) recovered image with OMP (error is 0.9012), 

(c)   recovered image with Lasso (error is 0.4556) and (d) recovered image 

with StructOMP (error is 0.1528)



Hierarchical Structure in Wavelets

Figure.  Recovery results : (a) the original image, (b) recovered image with 

OMP (error is 0.21986), (c) recovered image with Lasso (error is 0.1670) and 

(d) recovered image with StructOMP (error is 0.0375)



Connected Region Structure

Figure. Recovery results: (a) the background subtracted image,  (b) recovered 

image with OMP (error is 1.1833), (c) recovered image with Lasso (error is 

0.7075) and (d) recovered image with StructOMP (error is 0.1203)



Connected Region Structure

Figure.   Recovery error vs. Sample size: a) 2D image with tree structured

sparsity in wavelet basis; (b) background subtracted images with structured 

sparsity



Summary

 Proposed:

 General theoretical framework for structured sparsity 

 Flexible coding scheme for structure descriptions

 Efficient algorithm: StructOMP

 Graph sparsity as examples

 Open questions

 Backward steps 

 Convex relaxation for structured sparsity

 More general structure representation



Thank you !


