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The promise of unsupervised 

learning
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Use large amounts of unlabeled data to learn

complex/deep models, possibly with many 

parameters.



Some recent work on DBNs

Published Source Domain
Number of free 

parameters

Hinton et al.
Handwritten 

digits
1.6 million

Hinton & 

Salakhutdinov
Face images 3 million

Salakhutdinov & 

Hinton

Information 

retrieval
2.6 million

Ranzato & Szummer Text documents 3.6 million

Our DBN model over images 100 million
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(Similar situation for sparse coding.)



Large-scale learning [Banko & Brill, 2001]
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Large-scale unsupervised 

learning

 Current models: 1000s of input dimensions, 1000s 

of hidden units. 106 parameters.

 Our desired model:  108  parameters
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Graphics Processors

RAM

CPU

Graphics Card 

(GPU) Motherboard
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Why graphics processors?

Peak 

Gflops
(billion 

ops / 

sec)

1000

750

500

250

0

NVIDIA GPU

2003           2004          2005         2006            2007                 2008

(Source: NVIDIA CUDA Programming Guide)

Intel CPU
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Why graphics processors?
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IBM ASCI White 

Supercomputer

Cost: $110 million

Space: 2 basketball courts

13 graphics 

cards



GPU Schematic

(Note: Some additional features not displayed.)
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 Two-level parallelism

 Split task into blocks, blocks into threads.

 Access to global memory (not RAM).

 Restrictions on memory access patterns.

 Main bottleneck:

 Getting data into GPU memory, and accessing it in 

efficient ways.

 NVIDIA CUDA

 High-level routines to allocate/copy GPU memory.

 Good GPU matrix libraries that suffice for many 

machine learning tasks.

GPU Programming
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Unsupervised learning on GPUs

Initialize parameters in global memory.

while convergence criterion is not satisfied

Periodically transfer a large number of 

unlabeled examples into global memory.

Pick a few of the unlabeled examples at a 

time, and compute the updates in parallel 

using the GPU's two-level parallelism (blocks 

and threads) or GPU matrix libraries.

end

Transfer learnt parameters from global memory.
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Deep Belief 

Networks
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Contrastive divergence learning via conditional 

distributions:

. . . vv1 v2 v3

. . . hh1 h2

Restricted Boltzmann Machine 

(RBM)

E(v,h)ep(v,h) 

)(   
i

j

j

jiijij

i,j

i hbvchWvE(v,h)

)(|

)(|

cWhgh)p(v

bvWgv)p(h T





Large-scale Deep Unsupervised Learning                             Rajat Raina, Anand Madhavan, Andrew Y. Ng



Experimental setup

 Single graphics card: Nvidia GTX 280

 1GB on-board memory, 240 cores.

 Current price: US $250.

 CPU:

 Two cores, each @3.16GHz.



Learning Large RBMs

5 hours

2 weeks

GPU

Dual-core CPU

Learning 

time for 

10 million 

example

s 

(log 

scale)
Millions of parameters

1                             18                                 36          45

8 hours

½ hour

2 hours

35 hours

1 hour

1 day

1 

week
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72x faster



Overlapping patches DBN

Hidden UnitsBHidden UnitsA

Input image

Patch A

Patch B

WA, bA, cA WB, bB, cB

. . . . . .
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110 million parameters.

Overlapping patches DBN 

example

… … 

……
.                 ..                 .

……

20736 units 

(144x144)

32768 units
(128 units per 24x24 

patch)

1568

0

units

8192

units

2048

units

All layers can be 

learnt in about 1 day 

on a GPU.

All layers can be 

learnt in about 1 day 

on a GPU.
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Sparse Coding
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Sparse coding

Given unlabeled data x(i), obtain b by solving:

Alternating minimization

 Keep a fixed, find optimal b.

 Keep b fixed, find optimal a.
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= 0.8 *                   + 0.3 *                     + 0.5 *

x =   0.8 *       b
87

+  0.3 *          b376 +  0.5 *       

b411

            1||||:  jbj

Activations a

Basis vectors b

Input



Parallel Sparse Coding

 Alternating minimization

 Keep a fixed, find optimal b.  Easy on GPU (projected 

grad descent).

 Keep b fixed, find optimal a.  Not as straightforward.

 Need to parallelize:
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Parallel Sparse Coding

 Easy to optimize for one coordinate (keeping the 

others fixed).
(Friedman et al., 

2007)

 One iteration of our algorithm:

1

2

2 ||||||||min abax
j
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*

2a

*

1a

Descent direction

newa
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Sparse coding with 106

parameters

0
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15x faster



Summary

 Large-scale unsupervised learning.

 Ten-times more data might transform an OK algorithm into 

a good algorithm.

 Working at smaller-scale risks confounding the effects of 

the model itself, with the effect of scale.

 GPUs are a powerful tool for machine learning.

 Easy to program (no low-level programming).

 Especially useful for stochastic learning methods.

 Learning algorithms for DBNs and sparse coding can 

be an order-of-magnitude faster.
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THE  END



Why graphics processors?

Bandwidth 

from memory 

to processor

(GB/s)
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NVIDIA GPU

(Source: NVIDIA CUDA Programming Guide)
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__global__ void vecAdd(float* A, float* B){

int my = threadIdx.x + blockIdx.x * 128;

A[my]=A[my]+B[my];

}

int main(int argc, char** argv){

float A[SIZE], B[SIZE];

float* d_A, * d_B;

cudaMalloc((void**)&d_A,SIZE_BYTES); 

cudaMalloc((void**)&d_B,SIZE_BYTES);

cudaMemcpy(d_A,A,SIZE_BYTES,cudaMemcpyHostToDevice);

cudaMemcpy(d_B,B,SIZE_BYTES,cudaMemcpyHostToDevice);

vecAdd<<<32,128>>>(d_A,d_B);

cudaThreadSynchronize();

cudaMemcpy(A,d_A,SIZE_BYTES,cudaMemcpyDeviceToHost);

}

GPU Programming: A=A+B

GPU

CPU

(Adapted from http://www.cs.technion.ac.il/~marks/docs/LinuxClubGPGPU.pdf)


