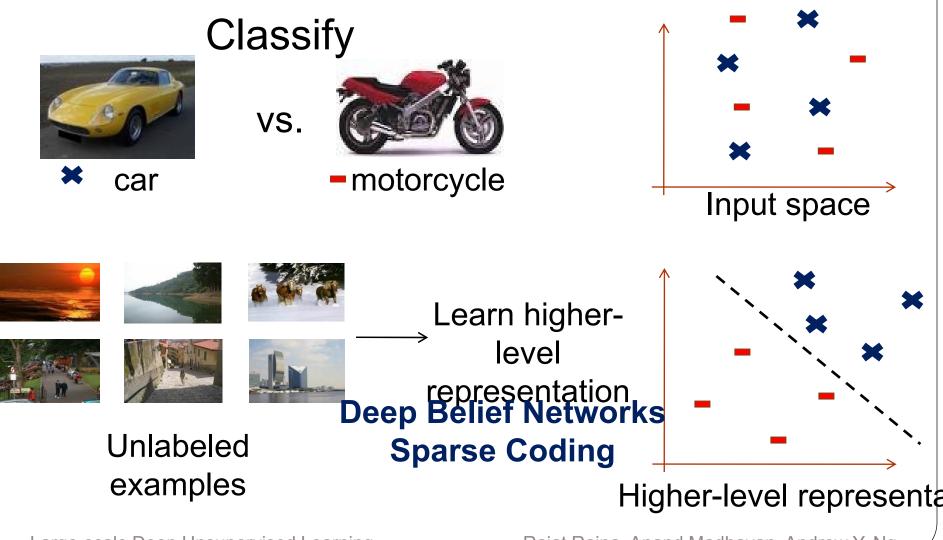
Large-scale Deep Unsupervised Learning using Graphics Processors

Rajat Raina Anand Madhavan Andrew Y. Ng

Stanford University

Learning from unlabeled data



Large-scale Deep Unsupervised Learning

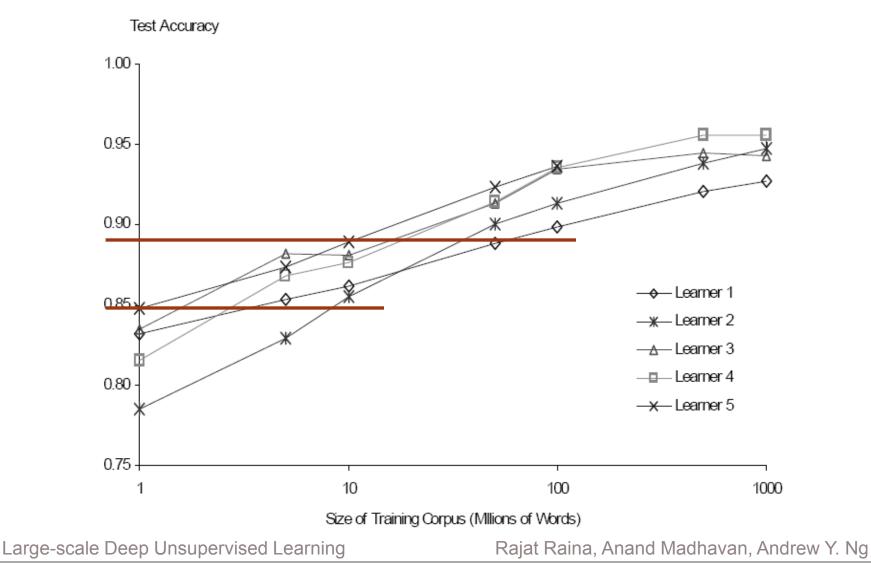
The promise of unsupervised learning

Use large amounts of unlabeled data to learn complex/deep models, possibly with many parameters.

Some recent work on DBNs

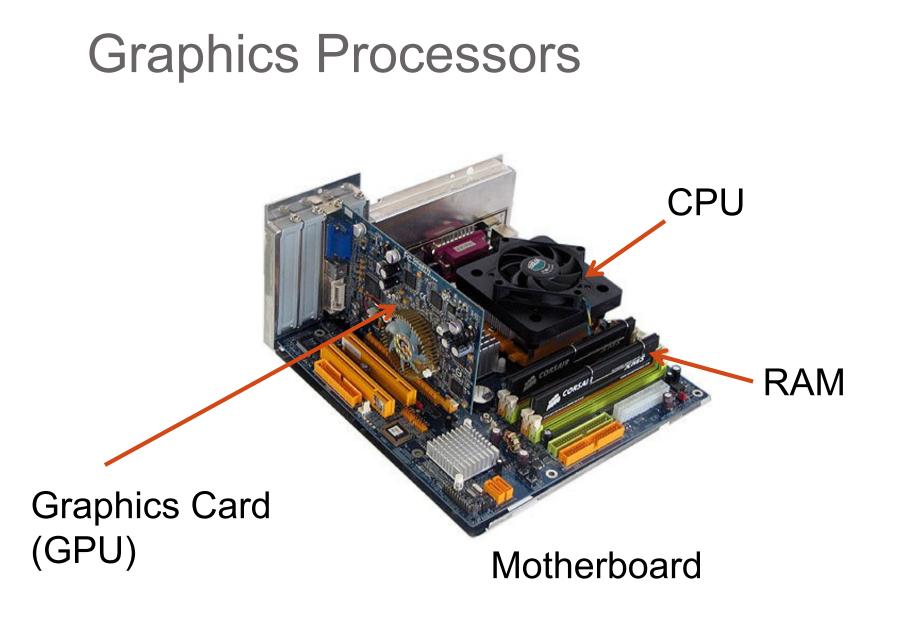
Published Source	Domain	Number of free parameters
Hinton et al.	Handwritten digits	1.6 million
Hinton & Salakhutdinov	Face images	3 million
Salakhutdinov & Hinton	Information retrieval	2.6 million
Ranzato & Szummer	Text documents	3.6 million
Our DBN model over images (Similar situation for sparse coding.		100 million

Large-scale learning [Banko & Brill, 2001]

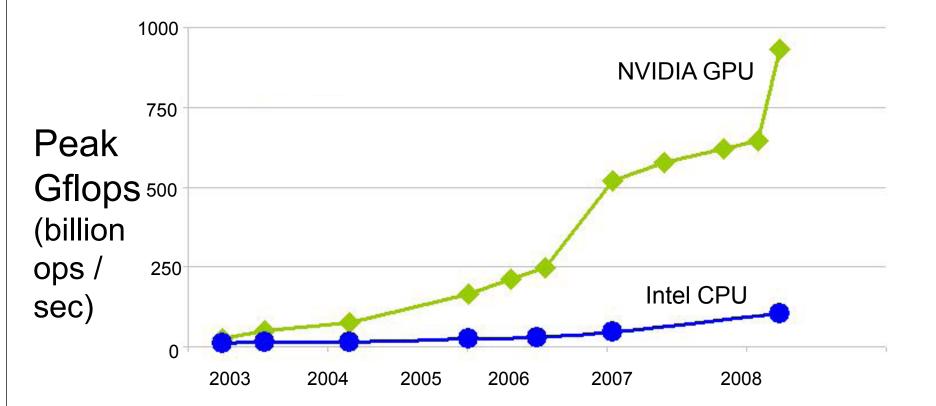


Large-scale unsupervised learning

- Current models: 1000s of input dimensions, 1000s of hidden units. 10⁶ parameters.
- Our desired model: 10⁸ parameters



Why graphics processors?

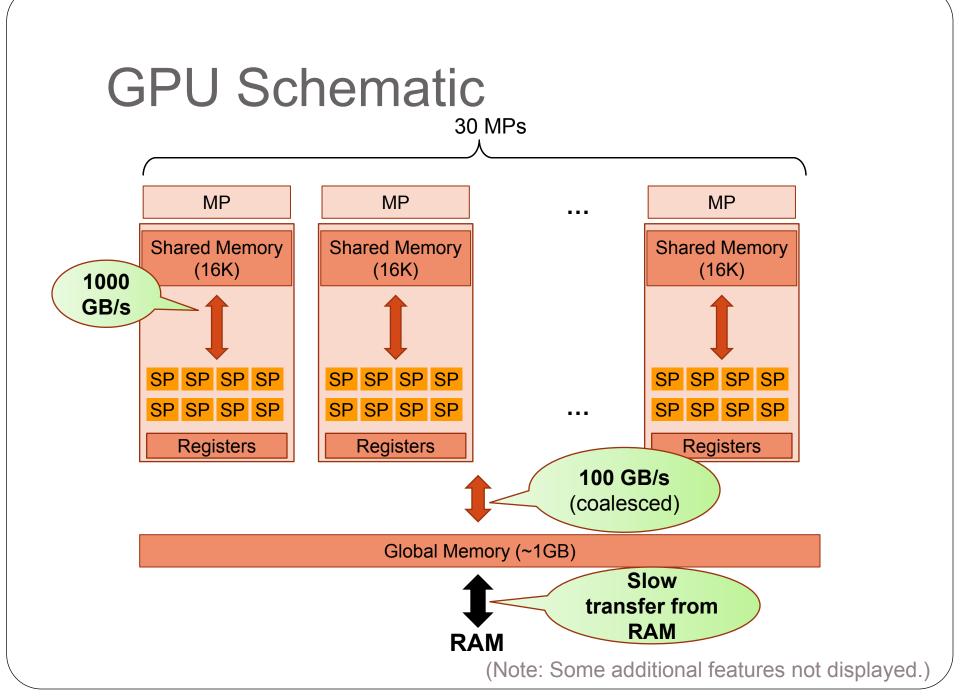


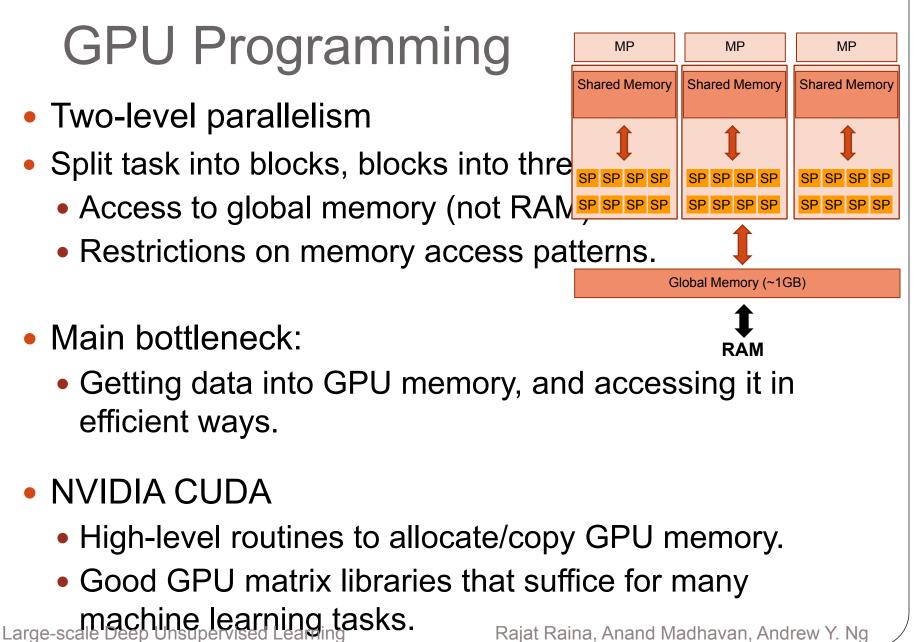
(Source: NVIDIA CUDA Programming Guide)

Why graphics processors?

IBM ASCI White Supercomputer Cost: \$110 million

13 graphics cards





Rajat Raina, Anand Madhavan, Andrew Y. Ng

Unsupervised learning on GPUs

Initialize parameters in global memory.

while convergence criterion is not satisfied

Periodically transfer a large number of unlabeled examples into global memory.

Pick a few of the unlabeled examples at a time, and compute the updates in parallel using the GPU's two-level parallelism (blocks and threads) or GPU matrix libraries.

end

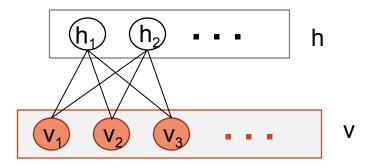
Transfer learnt parameters from global memory.

Deep Belief Networks

Learning Large DBNs using Graphics Processors

Rajat Raina, Andrew Y. Ng

Restricted Boltzmann Machine (RBM)



$$p(v,h) \propto e^{-E(v,h)}$$

$$E(v,h) = -(\sum_{i,j} v_i W_{ij} h_j + \sum_i c_i v_i + \sum_j b_j h_j)$$

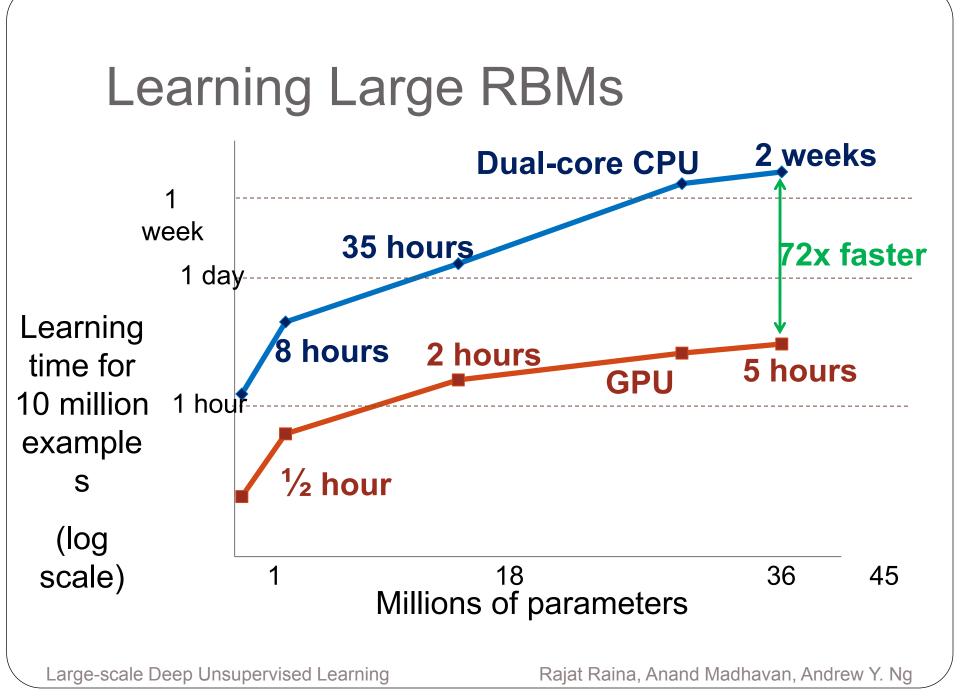
Contrastive divergence learning via conditional distributions: $p(h | v) = g(W^T v + b)$

$$p(v \mid h) = g(Wh + c)$$

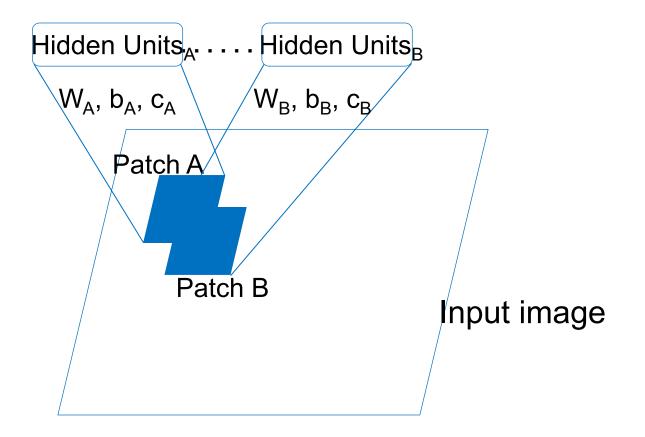
Large-scale Deep Unsupervised Learning

Experimental setup

- Single graphics card: Nvidia GTX 280
 - 1GB on-board memory, 240 cores.
 - Current price: US \$250.
- CPU:
 - Two cores, each @3.16GHz.

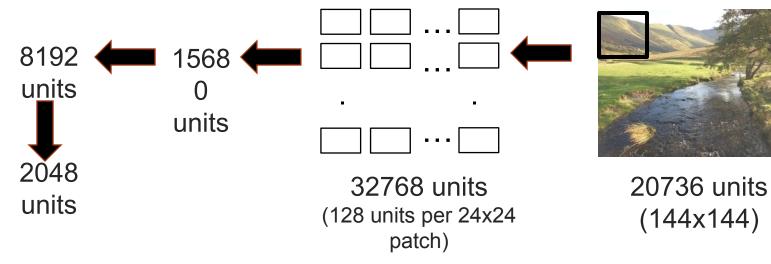


Overlapping patches DBN



Large-scale Deep Unsupervised Learning

Overlapping patches DBN example



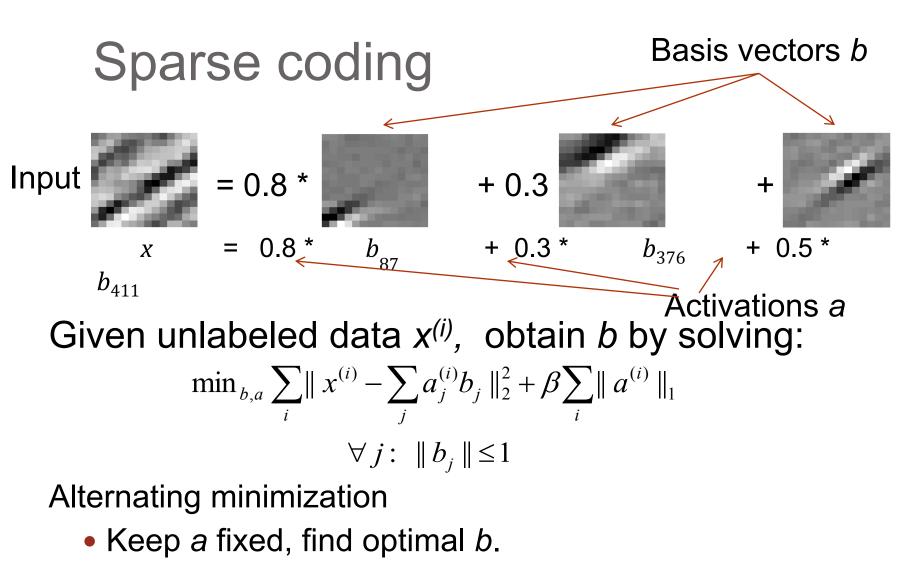
>110 million parameters.

All layers can be learnt in about 1 day on a GPU.

Large-scale Deep Unsupervised Learning

Sparse Coding

Large-scale Deep Unsupervised Learning



• Keep *b* fixed, find optimal *a*.

Parallel Sparse Coding

$$\min_{b,a} \sum_{i} \| x^{(i)} - \sum_{j} a_{j}^{(i)} b_{j} \|_{2}^{2} + \beta \sum_{i} \| a^{(i)} \|_{1}$$
$$\forall j: \| b_{j} \| \le 1$$

- Alternating minimization
 - Keep *a* fixed, find optimal *b*. Easy on GPU (projected grad descent).
 - Keep *b* fixed, find optimal *a*. Not as straightforward.

• Need to paralle
$$j = a_j b_j \|_2^2 + \beta \|a\|_1$$

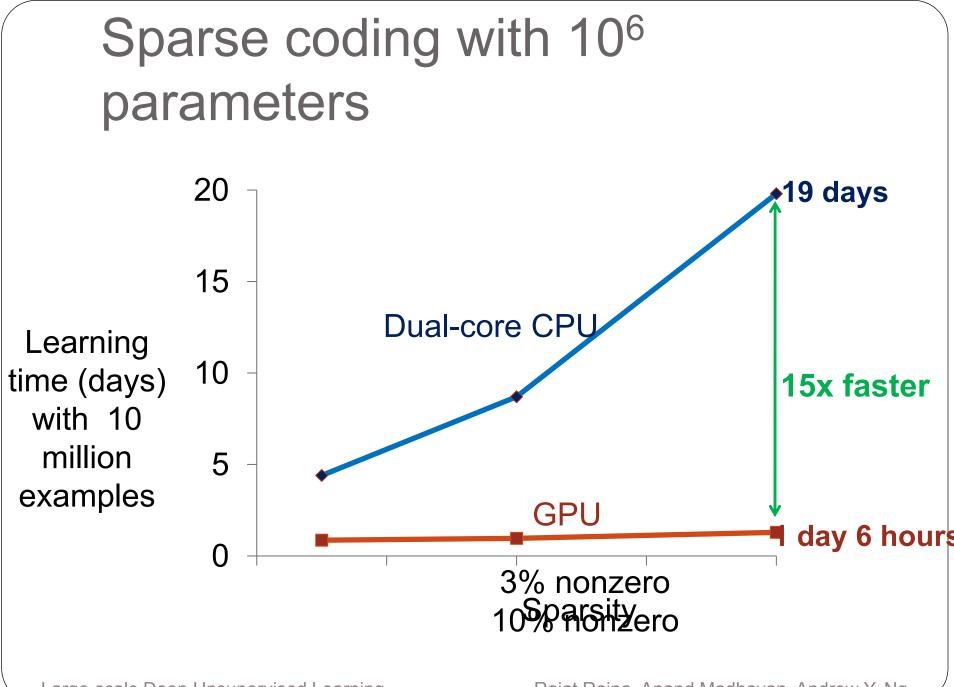
Parallel Sparse Coding $\min_{a} \|x - \sum_{j} a_{j} b_{j}\|_{2}^{2} + \beta \|a\|_{1}$

Easy to optimize for one coordinate (keeping the others fixed).

(Friedman et al.,

2007)

• One iteration of our algorithm: a_1^* a_2^* Descent direction



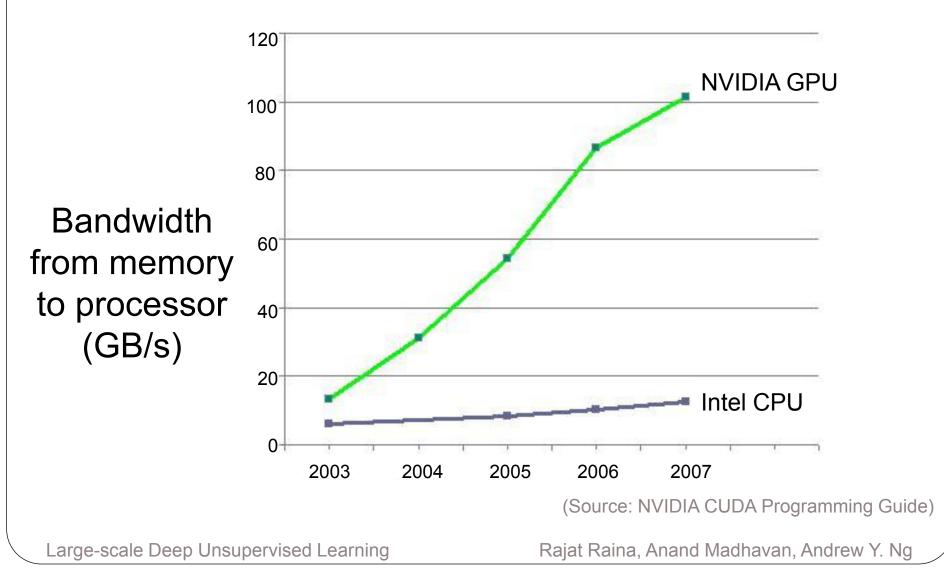
Large-scale Deep Unsupervised Learning

Summary

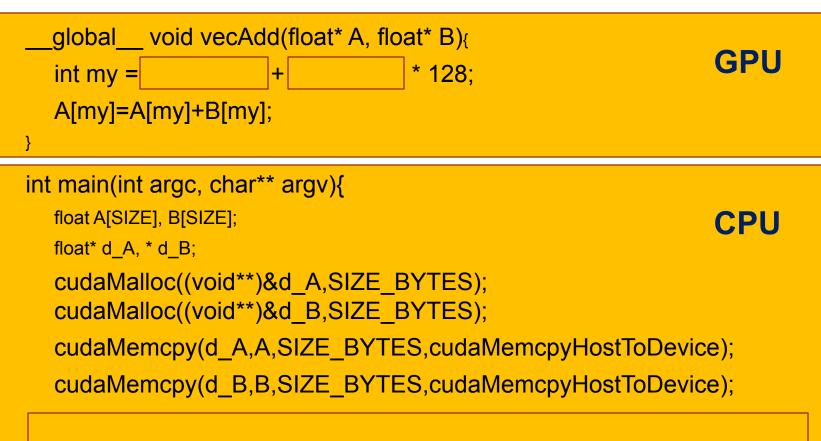
- Large-scale unsupervised learning.
 - Ten-times more data might transform an OK algorithm into a good algorithm.
 - Working at smaller-scale risks confounding the effects of the model itself, with the effect of scale.
- GPUs are a powerful tool for machine learning.
 - Easy to program (no low-level programming).
 - Especially useful for stochastic learning methods.
- Learning algorithms for DBNs and sparse coding can be an order-of-magnitude faster.

THE END

Why graphics processors?



GPU Programming: A=A+B



cudaThreadSynchronize(); cudaMemcpy(A,d_A,SIZE_BYTES,cudaMemcpyDeviceToHost);

(Adapted from http://www.cs.technion.ac.il/~marks/docs/LinuxClubGPGPU.pdf)