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" The promise of unsupervised
learning

Use large amounts of unlabeled data to learn

complex/deep models, possibly with many
parameters.
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Some recent work on DBNs

Published Source | Domain Number of free

parameters
Hinton et al. Handwritten 1, o ion
digits

Hinton & Face images 3 million
Salakhutdinov J
Salakhutdinov & Information .

. : 2.6 million
Hinton retrieval

Ranzato & Szummer | Text documents | 3.6 million

Our DBN model over images 100 million
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Large-scale learning anko & srit, 2001
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- Large-scale unsupervised
learning

e Current models: 1000s of input dimensions, 1000s
of hidden units. 106 parameters.

e Our desired model: 108 parameters
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Graphics Processors
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Why graphics processors?
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(Source: NVIDIA CUDA Programming Guide)
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Why graphics processors?

Supercomputer cards
Cost: $110 million
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GPU Schematic
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GPU Programming
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» Two-level parallelism
o Split task into blocks, blocks into thre

e Access to global memory (not RAM

1

SP SP SP SP
SP SP SP SP

1

SP SP SP SP
SP SP SP SP

|

SP SP SP SP
SP SP SP SP

e Restrictions on memory access patterns

e Main bottleneck:

e Getting data into GPU memory, and accessing it in

efficient ways.

 NVIDIA CUDA

!

Global Memory (~1GB)

]

RAM

e High-level routines to allocate/copy GPU memory.
e Good GPU matrix libraries that suffice for many
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Unsupervised learning on GPUs

Initialize parameters in global memory.
while convergence criterion is not satisfied

Periodically transfer a large number of
unlabeled examples into global memory.

Pick a few of the unlabeled examples at a
time, and compute the updates in parallel
using the GPU's two-level parallelism (blocks
and threads) or GPU matrix libraries.

end
Transfer learnt parameters from global memory.
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Deep Belief
Networks
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g Restricted Boltzmann Machine
(RBM)
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Contrastive divergence learning via conditional
distributions:p(h|v)=g(W'v+b)

p(vIh)=gWh+c)
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Experimental setup

* Single graphics card: Nvidia GTX 280
e 1GB on-board memory, 240 cores.
e Current price: US $250.

 CPU:
e Two cores, each @3.16GHz.




Learning Large RBMs

Dual-core CPU _2 weeks
1 _____________________________________________________________________________________________
week
72x faster
1 day oo
Learning
time for 5 hours
10 million 1hoyt—or
example
S 2 hour
(log
scale) 1 18 36 45

K Large-scale Deep Unsupervised Learning

Millions of parameters

Rajat Raina, Anand Madhavan, Andrew Y. Ng /




Overlapping patches DBN
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- Overlapping patches DBN
example

32768 units 20736 units
(128 units per 24x24 (144x144)
patch)

>110 million parameters.

All layers can be
learnt in about 1 day
on a GPU.
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Sparse Coding
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Spa rse COding Basis vectors b
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Given unlabeled data x(’, obtain b by solving:
min, , ZII X — Za(’)b 5+82 11a”

AR
Alternating minimization
o Keep a fixed, find optimal b.
e Keep b fixed, find optimal a.

Input
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Parallel Sparse Coding
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e Alternating minimization

e Keep a fixed, find optimal b. Easy on GPU (projected
grad descent).

e Keep b fixed, find optimal a. Not as straightforward.

» Need to parllphizes a b, 2 +4 a|,
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Parallel Sparse Coding
min,, || x=>a,b; 5 +4 ] al,

e Easy to optimize for one coordinate (keeping the

others fixed).
(Friedman et al.,

2007)
L. a . .
e One iteration o rithm:
* a
az ncw

Descent direction
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Summary

e Large-scale unsupervised learning.

e Ten-times more data might transform an OK algorithm into
a good algorithm.

e Working at smaller-scale risks confounding the effects of
the model itself, with the effect of scale.
» GPUs are a powerful tool for machine learning.
e Easy to program (no low-level programming).
e Especially useful for stochastic learning methods.

e Learning algorithms for DBNs and sparse coding can
be an order-of-magnitude faster.
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THE END




Why graphics processors?
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GPU Programming: A=A+B

__global__ void vecAdd(float* A, float* B);
int my = + *128; GPU

Almy]=A[my]+B[my];
}

int main(int argc, char** argv){
float A[SIZE], B[SIZE]; CPU
float* d_A, * d_B;

cudaMalloc((void**)&d_A,SIZE_BYTES);
cudaMalloc((void**)&d_B,SIZE_BYTES);

cudaMemcpy(d_A,A,SIZE_BYTES,cudaMemcpyHostToDevice);
cudaMemcpy(d_B,B,SIZE_BYTES,cudaMemcpyHostToDevice);

cudaThreadSynchronize();
cudaMemcpy(A,d_A,SIZE_BYTES,cudaMemcpyDeviceToHost);




