
Rajat Raina

Anand Madhavan

Andrew Y. Ng

Stanford University

Large-scale Deep Unsupervised

Learning using Graphics

Processors

Learning from unlabeled data

vs.

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

Classify

car motorcycle
Input space

Higher-level representation

Unlabeled

examples

Learn higher-

level

representation
Deep Belief Networks

Sparse Coding

The promise of unsupervised

learning

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

Use large amounts of unlabeled data to learn

complex/deep models, possibly with many

parameters.

Some recent work on DBNs

Published Source Domain
Number of free

parameters

Hinton et al.
Handwritten

digits
1.6 million

Hinton &

Salakhutdinov
Face images 3 million

Salakhutdinov &

Hinton

Information

retrieval
2.6 million

Ranzato & Szummer Text documents 3.6 million

Our DBN model over images 100 million

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

(Similar situation for sparse coding.)

Large-scale learning [Banko & Brill, 2001]

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

Large-scale unsupervised

learning

 Current models: 1000s of input dimensions, 1000s

of hidden units. 106 parameters.

 Our desired model: 108 parameters

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

Graphics Processors

RAM

CPU

Graphics Card

(GPU) Motherboard

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

Why graphics processors?

Peak

Gflops
(billion

ops /

sec)

1000

750

500

250

0

NVIDIA GPU

2003 2004 2005 2006 2007 2008

(Source: NVIDIA CUDA Programming Guide)

Intel CPU

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

Why graphics processors?

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

IBM ASCI White

Supercomputer

Cost: $110 million

Space: 2 basketball courts

13 graphics

cards

GPU Schematic

(Note: Some additional features not displayed.)

MP

Shared Memory

(16K)

SP SP SP SP

SP SP SP SP

Registers

Global Memory (~1GB)

…

…

30 MPs

MP

Shared Memory

(16K)

SP SP SP SP

SP SP SP SP

MP

Shared Memory

(16K)

SP SP SP SP

SP SP SP SP

100 GB/s

(coalesced)

1000

GB/s

Registers Registers

Slow

transfer from

RAM
RAM

 Two-level parallelism

 Split task into blocks, blocks into threads.

 Access to global memory (not RAM).

 Restrictions on memory access patterns.

 Main bottleneck:

 Getting data into GPU memory, and accessing it in

efficient ways.

 NVIDIA CUDA

 High-level routines to allocate/copy GPU memory.

 Good GPU matrix libraries that suffice for many

machine learning tasks.

GPU Programming

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

Global Memory (~1GB)

MP

Shared Memory

SP SP SP SP

SP SP SP SP

MP

Shared Memory

SP SP SP SP

SP SP SP SP

MP

Shared Memory

SP SP SP SP

SP SP SP SP

RAM

Unsupervised learning on GPUs

Initialize parameters in global memory.

while convergence criterion is not satisfied

Periodically transfer a large number of

unlabeled examples into global memory.

Pick a few of the unlabeled examples at a

time, and compute the updates in parallel

using the GPU's two-level parallelism (blocks

and threads) or GPU matrix libraries.

end

Transfer learnt parameters from global memory.

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

Deep Belief

Networks

Learning Large DBNs using Graphics Processors Rajat Raina, Andrew Y. Ng

Contrastive divergence learning via conditional

distributions:

. . . vv1 v2 v3

. . . hh1 h2

Restricted Boltzmann Machine

(RBM)

E(v,h)ep(v,h) 

)(  
i

j

j

jiijij

i,j

i hbvchWvE(v,h)

)(|

)(|

cWhgh)p(v

bvWgv)p(h T





Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

Experimental setup

 Single graphics card: Nvidia GTX 280

 1GB on-board memory, 240 cores.

 Current price: US $250.

 CPU:

 Two cores, each @3.16GHz.

Learning Large RBMs

5 hours

2 weeks

GPU

Dual-core CPU

Learning

time for

10 million

example

s

(log

scale)
Millions of parameters

1 18 36 45

8 hours

½ hour

2 hours

35 hours

1 hour

1 day

1

week

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

72x faster

Overlapping patches DBN

Hidden UnitsBHidden UnitsA

Input image

Patch A

Patch B

WA, bA, cA WB, bB, cB

.

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

110 million parameters.

Overlapping patches DBN

example

… …

……
. .. .

……

20736 units

(144x144)

32768 units
(128 units per 24x24

patch)

1568

0

units

8192

units

2048

units

All layers can be

learnt in about 1 day

on a GPU.

All layers can be

learnt in about 1 day

on a GPU.

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

Sparse Coding

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

Sparse coding

Given unlabeled data x(i), obtain b by solving:

Alternating minimization

 Keep a fixed, find optimal b.

 Keep b fixed, find optimal a.

  
i

i

i j

j

i

j

i

ab abax 1

)(2

2

)()(

, ||||||||min 

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

= 0.8 * + 0.3 * + 0.5 *

x = 0.8 * b
87

+ 0.3 * b376 + 0.5 *

b411

 1||||:  jbj

Activations a

Basis vectors b

Input

Parallel Sparse Coding

 Alternating minimization

 Keep a fixed, find optimal b. Easy on GPU (projected

grad descent).

 Keep b fixed, find optimal a. Not as straightforward.

 Need to parallelize:

  
i

i

i j

j

i

j

i

ab abax 1

)(2

2

)()(

, ||||||||min 

1

2

2 ||||||||min abax
j

jja 

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

 1||||:  jbj

Parallel Sparse Coding

 Easy to optimize for one coordinate (keeping the

others fixed).
(Friedman et al.,

2007)

 One iteration of our algorithm:

1

2

2 ||||||||min abax
j

jja 

a

*

2a

*

1a

Descent direction

newa

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

Sparse coding with 106

parameters

0

5

10

15

20

1 day 6 hours

19 days

GPU

Dual-core CPU
Learning

time (days)

with 10

million

examples

Sparsity
3% nonzero

10% nonzero

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

15x faster

Summary

 Large-scale unsupervised learning.

 Ten-times more data might transform an OK algorithm into

a good algorithm.

 Working at smaller-scale risks confounding the effects of

the model itself, with the effect of scale.

 GPUs are a powerful tool for machine learning.

 Easy to program (no low-level programming).

 Especially useful for stochastic learning methods.

 Learning algorithms for DBNs and sparse coding can

be an order-of-magnitude faster.

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

THE END

Why graphics processors?

Bandwidth

from memory

to processor

(GB/s)

120

100

80

60

40

20

0

Intel CPU

2003 2004 2005 2006 2007

NVIDIA GPU

(Source: NVIDIA CUDA Programming Guide)

Large-scale Deep Unsupervised Learning Rajat Raina, Anand Madhavan, Andrew Y. Ng

__global__ void vecAdd(float* A, float* B){

int my = threadIdx.x + blockIdx.x * 128;

A[my]=A[my]+B[my];

}

int main(int argc, char** argv){

float A[SIZE], B[SIZE];

float* d_A, * d_B;

cudaMalloc((void**)&d_A,SIZE_BYTES);

cudaMalloc((void**)&d_B,SIZE_BYTES);

cudaMemcpy(d_A,A,SIZE_BYTES,cudaMemcpyHostToDevice);

cudaMemcpy(d_B,B,SIZE_BYTES,cudaMemcpyHostToDevice);

vecAdd<<<32,128>>>(d_A,d_B);

cudaThreadSynchronize();

cudaMemcpy(A,d_A,SIZE_BYTES,cudaMemcpyDeviceToHost);

}

GPU Programming: A=A+B

GPU

CPU

(Adapted from http://www.cs.technion.ac.il/~marks/docs/LinuxClubGPGPU.pdf)

