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Executive Summary

• Model

– Smoothing Markov model of discrete sequences

– Extension of hierarchical Pitman Yor process [Teh 2006]

• Unbounded depth (context length)

• Algorithms and estimation

– Linear time suffix-tree graphical model identification and construction

– Standard Chinese restaurant franchise sampler

• Results

– Maximum contextual information used during inference

– Competitive language modelling results

• Limit of n-gram language model as n!1

– Same computational cost as a Bayesian interpolating 5-gram language 

model



Executive Summary

• Uses

– Any situation in which a low-order Markov model of discrete 

sequences is insufficient

– Drop in replacement for smoothing Markov model

• Name?

– ``A Stochastic Memoizer for Sequence Data‟‟ ! Sequence 

Memoizer (SM) 

• Describes posterior inference [Goodman et al „08]



Statistically Characterizing a Sequence

• Sequence Markov models are usually constructed by treating a 

sequence as a set of (exchangeable) observations in fixed-length 

contexts
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Increasing context length / order of Markov model

Decreasing number of observations

Increasing number of conditional distributions to estimate (indexed by context)

Increasing power of model



Finite Order Markov Model

• Example

P(x1:N ) =

NY

i = 1

P(x i jx1; : : : x i ¡ 1)

¼

NY

i = 1

P(x i jx i ¡ n + 1; : : : x i ¡ 1); n = 2

= P(x1)P(x2jx1)P(x3jx2)P(x4jx3) : : :

P(oacac) = P(o)P(ajo)P(cja)P(ajc)P(cja)

= G[](o)G[o](a)G[c](a)G[a](c)G[c](a)



Learning Discrete Conditional Distributions

• Discrete distribution $ vector of parameters

• Counting / Maximum likelihood estimation 

– Training sequence x1:N

– Predictive inference

• Example

– Non-smoothed unigram model (u = ²)

G[u ]

x i

i = 1 : N

Ĝ[u ](X = k) = ¼̂k =
# f ukg

# f ug

P(X n+ 1jx1 : : : xN ) = Ĝ[u ](X n+ 1)

G[u ] = [¼1; : : : ; ¼K ];K 2 j§ j



Bayesian Smoothing
• Estimation

• Predictive inference

• Priors over distributions

• Net effect

– Inference is “smoothed” w.r.t. uncertainty about 

unknown distribution

• Example

– Smoothed unigram (u = ²) x i

i = 1 : N

P(G[u ]jx1:n ) / P(x1:n jG[u ])P(G[u ])

P(X n+ 1jx1:n ) =
R

P(X n+ 1jG[u ])P(G[u ]jx1:n )dG[u ] U

G[u ] » Dirichlet(U); G[u ] » PY(d; c; U)
G[u ]



A Way To Tie Together Distributions

• Tool for tying together related distributions in hierarchical models

• Measure over measures

• Base measure is the “mean” measure

• A distribution drawn from a Pitman Yor process is related to its base 
distribution 

– (equal when c = 1 or d = 1)

G[u ] » PY(d; c; G[¾(u )])

x i » G[u ]

concentrationdiscount

base distribution

E[G[u ](dx)] = G[¾(u)](dx)

[Pitman and Yor ‟97]



Pitman-Yor Process Continued
• Generalization of the Dirichlet process (d       = 0)

– Different (power-law) properties

– Better for text [Teh, 2006] and images [Sudderth and Jordan, 2009]

• Posterior predictive distribution

• Forms the basis for straightforward, simple samplers

• Rule for stochastic memoization

P(X N + 1jx1:N ; c; d) ¼

Z

P(xN + 1jG[u ])P(G[u ] jx1:N ; c; d)dG[u ]

= E

" P K
k= 1(mk ¡ d)I (Ák = X N + 1)

c + N
+

c + dK

c + N
G[¾(u ) ](X N + 1)

#

Can‟t actually do this integral this way



Hierarchical Bayesian Smoothing
• Estimation

• Predictive inference

• Naturally related distributions tied 
together

• Net effect 
– Observations in one context affect 

inference in other context.

– Statistical strength is shared between 
similar contexts

• Example
– Smoothing bi-gram (w = ², u,v 2 Σ)

x jx i

U£ = f G[u ]; G[v ]; G[w ]g; w = ¾(u) = ¾(v)

P(£ jx1:N ) / P(x1:N j£ )P(£ )

P(X N + 1jx1:N )

=

Z

P(X N + 1j£ )P(£ jx1:N )d£

G[w ]

j = 1 : N[v ]i = 1 : N[u ]

G[v ]G[u ]

G
[the United States]

» PY(d; c; G
[United States]

)



SM/HPYP Sharing in Action

Conditional Distributions Posterior Predictive ProbabilitiesObservations

U

G[CP] G[GP]

G[P]

G[]



CRF Particle Filter Posterior Update

Conditional Distributions Posterior Predictive ProbabilitiesObservations

CPU

U

G[CP] G[GP]

G[P]

G[]



CRF Particle Filter Posterior Update

Conditional Distributions Posterior Predictive ProbabilitiesObservations

CPU

CPU

U

G[CP] G[GP]

G[P]

G[]



Alternative Sequence Characterization

• A sequence can be characterized by a set of single

observations in unique contexts of growing length

Increasing context length

Always a single observation

Foreshadowing: all suffixes of the string “cacao”
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``Non-Markov‟‟ Model

• Example

• Smoothing essential

– Only one observation in each context!

• Solution

– Hierarchical sharing ala HPYP

P(x1:N ) =

NY

i = 1

P(x i jx1; : : : x i ¡ 1)

= P(x1)P(x2jx1)P(x3jx2; x1)P(x4jx3; : : : x1) : : :

P(oacac) = P(o)P(ajo)P(cjoa)P(ajoac)P(cjoaca)



HPYP LM Sharing Architecture
• Share statistical strength between 

sequentially related predictive 

conditional distributions

– Estimates of highly specific 

conditional distributions

– Are coupled with others that are 

related

– Through a single common, more-

general shared ancestor

• Corresponds intuitively to back-off

G[]

G[a] G[t he]

G[wason t he]

G[on t he]

G[ison t he]

Unigram

2-gram

3-gram

4-gram
G[wason t he]G[ison t he]

G[on t he]

G[wason t he]G[ison t he]

G[t he]

G[on t he]

G[wason t he]G[ison t he]

G[wason t he]

G[ison t he]

G[on t he]



Hierarchical Pitman Yor Process 

• Bayesian generalization of smoothing n-gram Markov model 

• Language model : outperforms interpolated Kneser-Ney (KN) smoothing

• Efficient inference algorithms exist 

– [Teh, ‟06; Teh, Kurihara, Welling, ‟08]

• Sharing between contexts that differ in most distant symbol only

• Finite depth

G[] j d0; U » PY(d0; 0; U)

G[u ] j dju j ; G[¾(u ) ] » PY(dju j ; 0; G[¾(u ) ])

x i j x1:i ¡ 1 = u » G[u ]

i = 1; : : : ; T

8u 2 § n ¡ 1

[Teh ‟06]



Sequence Memoizer 

• Eliminates Markov order selection

• Always uses full context when making predictions

• Linear time, linear space (in length of observation sequence) graphical model 

identification

• Performance is limit of n-gram as n!1

• Same or less overall cost as 5-gram interpolating Kneser Ney

G
[God]

G[] j d0; U » PY(d0; 0; U)

G[u ] j dju j ; G[¾(u ) ] » PY(dju j ; 0; G[¾(u ) ])

x i j x1:i ¡ 1 = u » G[u ]

i = 1; : : : ; T

8u 2 § +

G
[Godsave]

G
[Godsaveour]

G
[Godsaveour]



Graphical Model Trie

Observations
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Latent conditional distributions with Pitman Yor priors / stochastic memoizers



Suffix Trie Datastructure
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All suffixes of the string “cacao”



Suffix Trie Datastructure
• Deterministic finite automata that recognizes all 

suffixes of an input string.

• Requires O(N2) time and space to build and store 

[Ukkonen, 95]

• Too intensive for any practical sequence modelling 

application.



Suffix Tree
• Deterministic finite automata that recognizes all 

suffixes of an input string

• Uses path compression to reduce storage and 

construction computational complexity.

• Requires only O(N) time and space to build and store 

[Ukkonen, 95]

• Practical for large scale sequence modelling 

applications



Suffix Trie Datastructure



Suffix Tree Datastructure



Graphical Model Identification
• This is a graphical model transformation under the 

covers.

• These compressed paths require being able to 

analytically marginalize out nodes from the graphical 

model

• The result of this marginalization can be thought of as 

providing a different set of caching rules to memoizers 

on the path-compressed edges



Marginalization
• Theorem 1: Coagulation

If G2jG1 » PY(d1; 0; G1) and G3jG2 » PY(d2; 0; G2)

then G3jG1 » PY(d1d2; 0; G1) with G2 marginalized out.

[Pitman ‟99; Ho, James, Lau ‟06; W., Archambeau, Gasthaus, James, Teh „09] 

G1

G2

G3

→

G1

G3



Graphical Model Trie



Graphical Model Tree



Graphical Model Initialization
• Given a single input sequence

– Ukkonen‟s linear time suffix tree construction algorithm is 

run on its reverse to produce a prefix tree

– This identifies the nodes in the graphical model we need to 

represent

– The tree is traversed and path compressed parameters for 

the Pitman Yor processes are assigned to each remaining 

Pitman Yor process



Nodes In The Graphical Model



Never build more than a 5-gram



Sequence Memoizer Bounds N-Gram Performance

HPYP exceeds SM computational complexity



Language Modelling Results

[Mnih & Hinton, 2009] 112.1

[Bengio et  al., 2003] 109.0

4-gram Modified Kneser-Ney [Teh, 2006] 102.4

4-gram HPYP [Teh, 2006] 101.9

Sequence Memoizer (SM) 96.9

AP News Test Perplexity



The Sequence Memoizer
• The Sequence Memoizer is a deep (unbounded) smoothing 

Markov model 

• It can be used to learn a joint distribution over discrete 
sequences in time and space linear in the length of a single 
observation sequence

• It is equivalent to a smoothing ∞-gram but costs no more to 
compute than a 5-gram


