Towards Semantic Interoperability in an Evolving Environment

Johann Eder Alps-Adria University Klagenfurt

Requirements for Interoperability Support

- Semantic expressiveness
- Operational scalability
- Maintainability

Distributed Information Systems

- Today we have the technique to deploy distributed information systems with affordable setup costs.
 - Web Services: interoperability on the syntactic level.
 - Emerging semantic interoperability (Semantic Web Services).
 - Emerging Approaches for formalizing and modeling distributed workflows.
- ▶ Typical problems in enterprise-scale applications:
 - Very high number of data instances
 - ▶ Demands for efficient computation → Can be a limiting factor for semantic applications.

Sub-Problem exchange of documents

- In an enterprise scenario one major use-case is the exchange of business documents. Due to evolution the content and meaning of such documents can change.
- Situation today: Transformation of documents with hand-written (tool assisted) scripts (i.e. XSLT).
 - ▶ Task of the programmer:
 - Error-prone writing of mapping-scripts that map the syntactic and the semantic level.
- General idea (semi)-automatic transformation between document versions.

Evolution an different levels

Schema change without ontology change

S->S'; O = O'(Change on the syntactic level)

Example: Rename of XML-tag

Ontology change without schema-change

S->S; O->O'(Change on the semantic level)

Example: Data gets new meaning: ICD-code version,

German zip-code in 1993.

Combination of schema and ontology-change

S->S'; O->O' (Changes on both levels)

Often schema-change induced by ontology change.

Introduction of a new attribute.

Example: Every invoice must now contain a tax number.

Possible Solution I

Possible Solution 2: Proposed architecture

Scientific Basis for Evolvable Interoperability

- Required expressiveness
 - → Ontologies
- Operational scalability
 - → Fast document transformers
- Maintainability
 - → Ontology Versioning, Knowledge Compilation

Need for (semi-)automatic adoption

- There is the need for a system or language to record changes in a powerful way.
 - Goal: Automatic computation of the consequences of changes and decisions for adoption.
 - Can possibly be fulfilled by powerful semantic web techniques with reasoning capabilities.
- 2. Need for a highly effective and efficient transformation system which is scalable to support the high throughput expected in enterprise-scale applications.
- I and 2 stay in conflict.

Conclusion:

- ▶ Evolution is a major concern in information systems.
- Distributed systems make the problem even more complex.
- There is a need for a system or language to record changes and their consequences in a powerful way. This requires reasoning support.
- Industrial-scale applications require a very high scalability.
- Scalability and Reasoning support stay in conflict.
- We propose "Knowledge Compilation" techniques to overcome this issue.

Possible Solution 1

Advantages:

Full reasoning support for the transformation on the semantic level. Rules can apply on schema and data.

Enterprise-Scale Applications:

- Very high number of instance documents
- Comparably low number of schemata.

Drawbacks:

- Computation on the semantic level is supposed to be expensive.
- The transformation is done for every single instance document.

