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A Very Long Relationship

Natural language processing (NLP) and machine learning
(ML) go back to the 1940s.

NLP to ML: “You give me elegant, well-founded solutions to my
problems.”

ML to NLP: “You give meaning to my math. You come with
data.”

But we are seeing signs of strain.
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Grievances from NLP

• Scalability: “I asked you to use all of the data. Why can’t you
ever finish a job?”

• Simplistic models: “Stop assuming things!”

• Infidelity: “Why are you always thinking about classification?”
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Grievances from ML

• Data incomplete: “Why can’t you just tell me what you
want?”

• Evaluation criteria unclear: “You keep changing your mind!”

• Infidelity: “Why are you always thinking about linguistics?”
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This marriage can survive, if both parties learn to understand each
other better.

This tutorial is meant to provide a bit of marriage counseling to
NLP and ML.
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Where We’re Going

Goals:

• Discuss several linguistic analysis problems that are examples
of structured prediction.

• Present algorithmic tools used for making structured
predictions (decoding).

• Present the dominant techniques used in NLP for learning to
make structured predictions from

• complete data (supervisedly) and
• incomplete data (unsupervisedly).
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Where We’re Not Going

I won’t be presenting any experimental comparisons.

I won’t go into much detail on datasets, annotation conventions, or
linguistic theory (see the references).

I won’t go into much detail on implementation (features, tricks,
data structures)—you won’t be able to walk away from this
tutorial and start writing code.
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Managing Expectations

Hopefully after this tutorial you will:

• Be (even) more excited about NLP as a playground for ML.

• Understand structured prediction better, and have a broader
view of what it encompasses.

• Have higher expectations for what (structured) ML should be
able to do.
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What’s Structured Prediction?

Unfortunately, there is no widely agreed-upon definition!

Two versions, proposed by [Daumé, 2006]:

1 Discrete output representable by (collections of)
variable-length vectors in {0, 1, . . . ,M}L.

2 Additionally, loss function does not decompose into parts.

Here we take the view that “you know it when you see it” and
assume that there may be more than one interesting or useful loss
function. (Often our loss functions will decompose.)
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Representations & Data
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Don’t Think About A Bag of Words

Language and text have structure.

Put another way, the words in a document are not IID.

Linguistics offers many different theories about the relationships
among bits of text; we will see some of them.
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Some Notation

X: set of possible inputs, often X = Σ∗

Y: set of possible outputs
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Where are the Words?

Problem: segmentation into words (or sentences)

蒙特利尔,又译滿地可,位于魁北克省南部,人口约372万,是加拿大第二大城市。主要使用
法语,在法语世界里的地位是仅次于巴黎的第二大城市,也有“小巴黎”的美称。蒙特利尔也

是世界最大的双语城市。

[蒙特利尔][,][又][译][滿地可][,][位于][魁北克省][南部][,][人口][约][372万][,][是][加拿

大][第二][大][城市][。][主要][使用][法语][,][在][法语][世界][里][的][地位][是][仅][次
于][巴黎][的][第二][大][城市][,][也][有[“小巴黎”][的][美称][。][蒙特利尔][也][是][世界]

[最大][的][双语][城市][。]
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Where are the Words?

Problem: segmentation into words (or sentence)s

X: Γ∗ (character sequences)

Y: Σ∗ (word sequences)

Mostly trivial for English (tokenization), though sentence
segmentation is a bit harder [Ratnaparkhi, 1996].
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The Problem with Words

Words proliferate like cockroaches, and they tend to follow Zipfian
distributions.

An early step in most language processing is trying to make words
more manageable.
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The Problem with Words
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The Problem with Words
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What’s in a Word?
Problem: projection into a simpler vocabulary

The angle of cats' ears is an important clue to their mood.

the angle of cats ' ears is an important clue to their mood .

surface string:

tokenized:

the angl of cat ' ear is an import clue to their mood .
stemmed:

the angle of cat ' ear is an important clue to their mood .
lemmatized:
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What’s in a Word?

X: Σ∗ (surface word sequence)

Y: Λ∗ (canonical word sequence)

• Stemming: strip suffixes, usually based on some rules
[Porter, 1980]

• Lemmatization: reduce words to stems (gave, given, give →
give)
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Extreme Tokenization: Parts of Speech

Problem: label each word with its part-of-speech

The angle of cats ' ears is an important clue to their mood   
Det.    Noun      P.    PlN.  Pos. PlN.  V.  Det.    Adj.                Noun  P.   Pos.Pr.   Noun  

X: Σ∗ (surface word sequence)

Y: Λ∗ (part-of-speech tag sequence)
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Why Structure’s Required

Independent classification of each word, without considering the
classes of its neighbors, gets 90% with enough data.

Syntactic context is an important clue for disambiguating words.

• leaves is probably a verb if it’s followed by a proper noun

• bear is probably a noun if it’s preceded by a determiner

Sequence (i.e., structured) models can achieve around 97% on this
task [Toutanova et al., 2003, Shen et al., 2007].
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Learning from Data

POS tagging is perhaps the simplest example (and one of the
earliest) where it makes sense to have humans label text, then
perform supervised learning.

POS conventions are not universal!

Annotators do not always agree!
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Morphology: Dirty Words

If you only speak English, this may come as a surprise.

Problem: morphological disambiguation (breaking words into
meaningful morphemes, optionally with tags)

박격포에는 여러 종류가 있다 .
NNC
박격포

PAD
에

PAU
는

PAU

DAN
여러

NNC
종류

PCA
가

PAU
X

PCA
X

VJ
있

EFN
다

SFN
.

ADV
있다

VX
있

ECS
다

SSY
.
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Morphology: Dirty Words

If you only speak English, this may come as a surprise.

Problem: morphological disambiguation (breaking words into
meaningful morphemes)

X: Σ∗ (surface word sequence)

Y: Λ∗ (morpheme sequence)
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Agglutinative Morphology

uygarlaştıramadıklarımızdanmışsınızcasına

“(behaving) as if you are among those whom we could not civilize”

(More than 60 million people speak this language.)
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Interesting Substrings: Chunks

Problem: find specific kinds of substrings

NP PP NP PP
The angle of cats' ears is an important clue to their mood   

The angle of cats' ears is an important clue to their mood   
B-NP  I-NP      B-PP  I-PP     I-PP   O  B-NP    I-NP              I-NP  B-PP  I-PP     I-PP
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Interesting Substrings: Chunks

Problem: find specific kinds of substrings

X: Σ∗ (sentence)

Y: ((Λ× {B, I}) ∪ {O})∗ (“I-O-B” labels)

Examples:

• Base noun phrase chunking

• “Shallow parsing” (includes prepositional phrases and verb
groups)

• Named entity recognition
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Base Noun Phrase Chunking

NP NP NP NP
The angle of cats' ears is an important clue to their mood   
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Named Entity Recognition

On the streets around Fatemi Square, near the headquarters of 
the leading opposition candidate, Mir Hussein Moussavi, riot 
police officers dressed in Robocop gear roared down the 
sidewalks on motorcycles to disperse and intimidate the clots of 
pedestrians who gathered to share rumors and dismay.
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Named Entity Recognition

On the streets around Fatemi Square, near the headquarters of 
the leading opposition candidate, Mir Hussein Moussavi, riot 
police officers dressed in Robocop gear roared down the 
sidewalks on motorcycles to disperse and intimidate the clots of 
pedestrians who gathered to share rumors and dismay.
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Extreme Chunks: Parsing

Problem: find compositional phrases from the whole sentence
down to the words

The angle of cats' ears is an important clue to their mood   

S

NP

NP
PP

NP
VP

NP
PP

         1         2       3     4         5      6   7            8              9    10    11      12

〈〈S, 1, 12〉, 〈NP, 1, 5〉, 〈PP, 3, 5〉, 〈NP, 4, 5〉, 〈VP, 6, 12〉, 〈NP, 7,
12〉, 〈PP, 10, 12〉, 〈NP, 11, 12〉〉
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Extreme Chunks: Parsing

Problem: find compositional phrases from the whole sentence
down to the words

X: Σ∗ (sentence)

Y: 2Λ×N2
(phrase structure)

Underlying this, often, is some context-free grammar.
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NL vs. PL

Undergrads who have taken programming languages often want to
use the same tools to process natural language. The problem—and
the reason NLP is married to ML and not to PL—is that natural
language syntax is riddled with ambiguities.

little hope given brain-damaged woman
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little hope given brain-damaged
woman

• After Terry’s accident, the doctor gave her family the bad
news.

• By September, McCain’s campaign staff were not optimistic.

• It was a strange Christmas for little Hope.

• If only little Hope had used her gift for good rather than evil ...
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Alternative to Phrases: Dependency
Parsing

Not everyone agrees on parsing conventions!

Dependency syntax focuses on relationships among words.

$ The angle of cats' ears is an important clue to their mood   
     0    1          2     3     4          5      6   7           8            9       10    11       12
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Alternative to Phrases: Dependency
Parsing

X: Σ∗ (sentence)

Y: y ∈ {0, 1, 2, . . . , n} → 2{0,1,...,n}
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Two Versions of Dependency Parsing

Projective trees correspond to derivations in a special kind of
context-free grammar [Gaifman, 1965].

Nonprojective trees don’t correspond to CF parses:

$ A talk is scheduled on cats' ears today

Nonprojectivity is more important in some languages than others.

44 / 169



45 / 169



Interlude: Linguistic Pipeline

As we descend the iceberg, we get closer to the physical, cultural,
non-linguistic world where language gets used.
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phonetics (physical properties of speech)

orthography (units of writing)

wwwwwwwwwwwwwwwww

phonology (units of sound)

WWWWWWWWWWWWWW

morphology (structure of words)

syntax (structure of sentences)

semantics (literal meaning of words and utterances)

pragmatics (acts of communication)

discourse (connected series of utterances)
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Meaning
Problem: convert a sentence into a canonical meaning
representation language

Robin swam across the river and delivered the message.

Robin swam across the river and delivered the message.

AGENT

AGENT

PATIENT

MEDIUM

∃r, m, p1, p2 SwimTo(Robin, p) ∧ river(r) ∧ 
Across(r, p1, p2)  ∧ Deliver(Robin, m) ∧ Message(m)

semantic roles:

first order logic:
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Meaning

Problem: convert a sentence into a canonical meaning
representation language

X: Σ∗ (sentence)

Y: no consensus yet!

• identifying semantic roles of a verb [Palmer et al., 2005]

• first order logic expressions [Zettlemoyer and Collins, 2005]

• problem-specific meaning language [Thompson et al., 1997]
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Grounding

Problem: which real-world entities are mentioned and where?

The Princeton and Yale graduate has more than 16 
years of federal opinions with which to gauge her 
proficiency as an arbiter. She spent six years as a 
district judge and a decade on the 2nd U.S. Circuit 
Court of Appeals, but the 2001 comment promises to 
be a focal point of her confirmation.  Conservatives 
such as talk radio host Rush Limbaugh have called 
her a "reverse racist." Limbaugh further denounced 
President Obama as "the greatest living example of a 
reverse racist."
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Grounding

Problem: which real-world entities are mentioned and where in
text?

• Entity detection (often seen as a kind of chunking)

• Coreference resolution: which referring expressions corefer?

• Grounding in ontologies
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Another Dimension: Multiple Languages

Parallel and comparable corpora are a fascinating type of data.

• Sentence alignment (not widely studied now)

• Word alignment

• Phrase (chunk) alignment

• Tree alignment

• Bilingual parsing

• Automatic bilingual dictionary construction

Major application: machine translation
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Debates in NLP

All of these tasks are not universally seen as important!

As noted, sentence segmentation and part-of-speech tagging are
mostly “solved” (for English).

People who work on applications always question whether a
particular level of analysis helps their application, and whether the
useful ones deserve intrinsic evaluation (e.g., word alignment).
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NLP Problems on the Frontier of
Structured Prediction

• Finding the entire predicate-argument structure of a sentence

• Tasks requiring generation of text from deeper representations
• Question answering
• Translation
• “Simplification”

• Learning about linguistic types—lexicons and ontologies

• Representing discourse structure and dialog structure

• Learning world knowledge from text
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Summary of Some Structures

NLP problem x ∈ . . . y ∈ . . .
word segmentation Γ∗ Σ∗

tokenization, tagging Σ∗ Λ|x|

morphological parsing Σ∗ Λ∗

chunking Σ∗ ((Λ× {B, I}) ∪ {O})|x|

phrase-structure parsing Σ∗ 2Λ×N2

dependency parsing Σ∗ {0, . . . , |x|} → 2{1,...,|x|}
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Decoding

57 / 169



Notation

X: set of possible inputs, often X = Σ∗

X: random variable taking values x ∈ X

Y: set of possible outputs

Y: random variable taking values y ∈ Y

h: prediction function X→ Y

A decoder is an implementation of h.
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Why “Decoder”?
“Structured prediction” is the 2009 metaphor of choice, but before
that, circa 1999, it was “source-channel models.”

Source-channel model:

p(X = x,Y = y) = p(Y = y)︸ ︷︷ ︸
source

× p(X = x | Y = y)︸ ︷︷ ︸
channel

(1)

Source-channel decoding:

h(x) = argmax
y ∈Y

p(y | x)

= argmax
y∈Y

p(y)× p(x | y)
p(x)

= argmax
y∈Y

p(y)× p(x | y) (2)
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Decoding Defined

Generic definition:

h(x) = argmin
y∈Y

EY∼p(Y|x)[`(y,x,Y)] (3)

Common case when probabilistic models are used:

`(y,x,y∗) = 1− δ(y,y∗) (4)

h(x) = argmax
y∈Y

p(y | x) (5)
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Linear Models

Let g : X× Y→ Rd denote a feature vector function that
embeds input-output pairs in Euclidean space.

Linear models define a score parameterized by weights w ∈ Rd:

w>g(x,y) (6)

Decoding with a linear model means finding

h(x) = argmax
y∈Y

w>g(x,y) (7)
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Simplest Recipe For Structured Prediction

• Input and output spaces X and Y

• A feature representation g (linear model)

• A decoder h : X→ Y

• A method for learning the parameters w
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On “Local” Features

Efficiency of decoding hinges crucially on g.

Specifically, we often assume a specific structure to g: that it can
be calculated based on local parts of the structure.

This implies independence assumptions in the scoring function
w>g.

Extreme version, when y = 〈y1, . . . , yn〉 is a sequence:

g(x,y) =
n∑
i=1

f(x, yi, i) (8)

(This is a non-structured classifier for each yi!)

63 / 169



Dynamic Programming

Combinatorial optimization problems with optimal substructure
and that break down into parts that are densely shared can often
be solved efficiently by dynamic programming.

This relies on certain factoring properties of g. Assume y breaks
into “local parts” {πi(y)}i:

g(x,y) =
∑
i

f(x, πi(y)) (9)

Key example: Viterbi algorithm.
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(Classical) Viterbi Algorithm

Input: x = 〈x1, x2, . . . , xn, 8︸︷︷︸
xn+1

〉, each xi ∈ Σ

Output: y = 〈 �︸︷︷︸
y0

, y1, y2, . . . , yn, 8︸︷︷︸
yn+1

〉, each yi ∈ Λ

Assumption (HMM): p(x,y) =
n+1∏
i=1

p(yi | yi−1)p(xi | yi)

max
y∈Y

p(x,y) = V (8, n+ 1) (10)

V (y, i) = max
y′∈Λ

V (y′, i− 1)× p(y | y′)× p(xi | y)

V (�, 0) = 1
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Viterbi, Visualized

y

y'

...

...

...

...

... ...

p(y'|y) p(x1|y')

x1 xn...
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(Classical) Viterbi Algorithm
Input: x = 〈x1, x2, . . . , xn, 8︸︷︷︸

xn+1

〉, each xi ∈ Σ

Output: y = 〈 �︸︷︷︸
y0

, y1, y2, . . . , yn, 8︸︷︷︸
yn+1

〉, each yi ∈ Λ

Assumption (HMM): p(x,y)︸ ︷︷ ︸
exp w>g(x,y)

=
n+1∏
i=1

p(yi | yi−1)p(xi | yi)︸ ︷︷ ︸
exp w>

Pn+1
i=1 f(x,yi,yi−1,i)

max
y∈Y

p(x,y) = V (8, n+ 1) (11)

V (y, i) = max
y′∈Λ

V (y′, i− 1)× p(y | y′)× p(xi | y)

V (�, 0) = 1
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(Generalized) Viterbi Algorithm

Input: x = 〈x1, x2, . . . , xn, 8︸︷︷︸
xn+1

〉, each xi ∈ Σ

Output: y = 〈 �︸︷︷︸
y0

, y1, y2, . . . , yn, 8︸︷︷︸
yn+1

〉, each yi ∈ Λ

Assumption: g(x,y) =
n+1∑
i=1

f(x, yi, yi−1, i)

max
y∈Y

w>g(x,y) = log V (8, n+ 1) (12)

V (y, i) = max
y′∈Λ

V (y′, i− 1)× exp(w>f(x, y, y′, i))

V (�, 0) = 1
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What Features Are “Local”?

Generalized Viterbi, as described, permits features that look at any
part of the input (words, word shape, spelling features, etc.) and
any two adjacent output symbols: f(x, yi, yi−1, i).

Some things it still can’t do:

• Three consecutive output symbols.

• Output symbols for two instances of the same word.

• How many times have I seen output symbol y?
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Other DP Algorithms

• Monotonic sequence alignment/edit distance
[Levenshtein, 1965]

• Probabilistic Earley’s and CKY (weighted CFG parsing)

• Projective dependency parsing [Eisner, 1996]

• Parsing with other formalisms (combinatory categorial
grammar, tree adjoining grammar, etc.)
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Generic Dynamic Programming

This technique is so beloved by NLP that there are now:

• generalizations of logic programming for DP [Goodman, 1999]

• semiring-independent solvers [Eisner et al., 2005]

• connections to hypergraph search [Klein and Manning, 2001]

• generalizations of A∗ for hypergraphs
[Klein and Manning, 2003]

• algorithms for including non-factoring features
[Chiang, 2007, Gimpel and Smith, 2009]

Bottom line: great way to think about decoders, often a good way
to implement them.
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Structures are Graphs

We mention two interesting cases where decoding can be reduced
to well-known algorithms for graphs.
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Maximum Weighted Bipartite Matching
Input: two sentences x = 〈x1, x2, . . . , xn〉 and
x′ = 〈x′1, x′2, . . . , x′m〉

Output: y is a matching of {1, . . . , n} to {1, . . . ,m}; each xi and
each x′j matches to at most one word in the other sequence

73 / 169



Maximum Weighted Bipartite Matching

Input: two sentences x = 〈x1, x2, . . . , xn〉 and
x′ = 〈x′1, x′2, . . . , x′m〉

Output: y is a matching of {1, . . . , n} to {1, . . . ,m}; each xi and
each x′j matches to at most one word in the other sequence

Assumption: g(x,x′,y) =
∑
〈i,j〉∈y

f(x,x′, i, j)

Solution: Hungarian algorithm [Kuhn, 1955], with
O((n+m)2 log(n+m) + nm(n+m)) runtime

Application: word alignment [Melamed, 2001]
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Maximum Weighted (Directed) Spanning
Tree

Input: sentence x = 〈 �︸︷︷︸
x0

, x1, . . . , xn〉

Output: y ∈ {0, 1, . . . , n} → 2{1,...,n} defines a 0-arborescence,
i.e., a directed spanning tree with x0 as the root and x1, . . . , xn as
vertices; y(i) denotes y’s parent

Assumption: g(x,y) =
n∑
i=1

f(x, i,y(i))

Solution: Chu-Liu-Edmonds algorithm
[Chu and Liu, 1965, Edmonds, 1967] adapted by [Tarjan, 1977],
with O(n2) runtime

Applicaton: nonprojective dependency parsing
[McDonald et al., 2005]
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Dependency Parsing Features

The spanning tree approach works when we have only f(x, i,y(i)).

• Parent-child features (words, word classes, lemmas)

• Context features (words on either side of the parent or child)

• Distance features

Non-local:

• Sibling features

• Grandparent/grandchild features

• Valency features (how many children?)

• Phrase features
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Other Approaches

• Integer linear programming [Germann et al., 2001,
Roth and Yih, 2004, Martins et al., 2009]

• Reranking: replace Y with the k best solutions from a simpler
model [Collins, 2000, Charniak and Johnson, 2005]

• Stacking [Kou and Cohen, 2007]

• Belief propagation for structures [Smith and Eisner, 2008]

• Markov chain Monte Carlo methods [Finkel et al., 2006]

• Search [Daumé, 2006]

Note that many such approaches are tightly linked to specific kinds
of learning algorithms.
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Current Hot Topics

• Coarse-to-fine decoding [Charniak and Johnson, 2005]

• Decoding multiple structures at once (“joint” inference)
[Cohen and Smith, 2007], among others

• Generic tools for building decoders using DP, ILP, ...
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Break #1 (10 minutes)

Next up: Supervised structured natural language processing
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Supervised Structured NLP
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Recap

• We’ve seen a bunch of NLP problems presented as structured
prediction problems.

• We’ve discussed the (generic) problem of decoding (i.e.,
making a prediction).

• Next: How to learn the prediction model from labeled data.
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Learning Setting

Training data: D̃ = 〈〈x̃1, ỹ1〉, 〈x̃2, ỹ2〉 . . . , 〈x̃Ñ , ỹÑ 〉〉

Testing data: Ḋ = 〈〈ẋi, ẏi〉〉Ṅi=1

Remember that the annotations ỹi depend heavily on conventions
and are often subject to debate!
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Loss Functions

` : Y× X× Y→ R≥0

`(y,x,y∗) is the cost when h(x) = y but the correct answer is y∗.

Training usually looks like:

min
w

Ñ∑
i=1

`(h(x̃i), x̃i, ỹi) + modelcomplexity(w) (13)

Considerable effort has gone into making the loss function used in
training look like the evaluation function we care about on test
data.
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Loss Functions in NLP

NLP makes this harder with evaluation-time cost functions that:

• are not formally well-defined

• are not widely agreed upon

• are not unique and involve trade-offs

• are extrinsic (embedded in systems)

• change frequently

• require humans
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Loss Functions in NLP

For intrinsic evaluation:

• tagging: count of words wrongly tagged

• chunking: F1 of identified chunks, by chunk type

• parsing: count of incorrect phrases in a parse tree or words
wrongly attached

• coreference: precision and recall

Admittedly, we’d rather see how these affect performance of real
systems. But extrinsic evaluations are expensive.
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Generative Models

Basic idea: Define a stochastic process that can produce X× Y (or
some appropriate subset), then estimate parameters using
maximum likelihood (MLE) or maximum a posteriori (MAP).

For NLP models, this commonly means a probabilistic grammar
(e.g., HMM or PCFG).

Challenge: predicting each piece of structure exactly once limits
the effective features g if we want to use simple estimators (“count
and normalize”). There are also generative arbitrary-feature
models [Rosenfeld, 1997, Smith et al., 2007].
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Example: HMM

1
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Example: HMM
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Example: HMM

2n + 2

y1

x1

y2

x2

yn

xn

...

...
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Generative Models of Structure

Pros: easy to train

Cons: major restrictions on features due to Markovian
independence assumptions, log-loss on X× Y

Bottom line: least satisfying from a machine learning perspective,
but NLP makes heavy use of them anyway.
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Why Be Generative?

If our goal is a particular type of prediction (here, from X to Y),
there’s no reason to learn a distribution over X.

(Of course, if we want our model to do many types of prediction,
then a generative model may be ideal.)

Discriminative methods focus on the decoding function h.
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Discrimative Structure Models (Take 1)

Early approaches [Ratnaparkhi et al., 1994, McCallum et al., 2000]
broke the output y ∈ Y into “parts” that could be built
incrementally, e.g., using probabilistic automata.

Each “part” has its own discriminative classification model that
depends on earlier decisions (trained using multinomials,
multinomial logistic regression, SVMs, decision trees, etc.).

Classic case: Magerman’s decision tree parser [Magerman, 1995].
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Decoding with Local Decisions

Generally state-space search or dynamic programming implements
h.

Greedy version (e.g., [Nivre and Scholz, 2004]):

h(x) = h`(x, h`−1(x, · · ·h2(x, h1(x)) · · · )) (14)
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Example: “Maximum Entropy Markov
Model”

3
2

1
y1

x1

y1

x1

y2

x2

n + 1

y1

x1

y2

x2

yn

xn

...

...
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What’s Wrong?

This formulation might lead to label bias [Lafferty et al., 2001]:
there’s no notion of “you made a bad choice earlier, and now there
are no good options.” (This is not a problem with search or
inference; it is a problem with the model.)

Training doesn’t match testing: training always assumes “earlier”
h steps were correct.

Expressive power: some h cannot be represented when we make
the model incremental [Smith and Johnson, 2007].

[Daumé, 2006] offers a way to train these that tries to take
possible later decisions into account.
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Local Classifiers

Pros: easy to train, approximate factored loss functions, rich
“history-facing” features

Cons: lots of approximations (loss, decoding during training), label
bias problem, expressive power

Bottom line: least satisfying analytically, but NLP makes heavy use
of them anyway. A widely held view is that richer features often
make up for the flaws.
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Discriminative Structure Models (Take 2)

Want a global score (like generative models), discriminatively
trained (like local classifiers), but with a single loss function on Y.

Solution: conditional random fields [Lafferty et al., 2001]
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Conditional Random Fields

Log-linear models over Y given evidence in X:

log p(y | x) ∝ w>g(x,y) (15)

p(y | x) =
ew
>g(x,y)

z(w,x)
← exponentiated score
← partition function

(16)

= exp
(
w>g(x,y)− log z(w,x)

)
(17)

Assume y breaks into “local parts” {πi(y)}i:

p(y | x) = exp

(
w>

(∑
i

f(x, πi(y))

)
− log z(w,x)

)
(18)
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CRFs for Sequence Labeling

1

y1

x1

y2

x2

yn

xn
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...
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Training CRFs

CRFs are (conditional) probabilistic models; M(C)LE requires:

max
w

Ñ∏
i=1

p(ỹi | x̃i) (19)

≡ max
w

Ñ∑
i=1

log p(ỹi | x̃i) (20)

≡ max
w

w>

 Ñ∑
i=1

g(x̃i, ỹi)

− Ñ∑
i=1

log z(w, x̃i) (21)

There is no closed-form solution. We must use iterative
optimization routines.
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CRFs: Implementation

max
w

w>

 Ñ∑
i=1

g(x̃i, ỹi)

− Ñ∑
i=1

log z(w, x̃i) (22)

Fortunately, the above is concave and differentiable with respect
to w.

∂

∂wj
=

Ñ∑
i=1

(
gj(x̃i, ỹi)− EY∼p(y|x̃i)gj(x̃

i,Y)
)

(23)
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CRFs: Implementation

Calculating the objective and first derivatives requires a particular
kind of inference that sums over y for a given x:

η(w,x, r) =
∑
y∈Y

r(x,y)︸ ︷︷ ︸
some function

exp w>g(x,y) (24)

for some function r. The two cases we need are

• η(w,x, 1) ≡ z(w,x)
• η(w,x, gj) ≡ ∂z

∂wj

If the features factor sufficiently locally, the above are solvable with
dynamic programming.
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CRFs: Regularization

Like most discriminative learners, CRFs tend to overfit the training
data.

Most common solution is to penalize models with large |w|:

max
w

Ñ∑
i=1

log p(ỹi | x̃i)− C
d∑
j=1

w2
j (25)

This can be seen as “L2 regularization,” or as a MAP estimator
with a Gaussian prior (zero means and σ2I covariance matrix) on
w [Chen and Rosenfeld, 2000].

There’s also an L1 version, but it’s less widely used.
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Generalizing CRFs to Other Structures

Though the name “conditional random field” is not exactly
appropriate, similar models have been used for many problems
apart from sequence labeling:

• context-free parsing [Finkel et al., 2008]

• dependency parsing [Smith and Smith, 2007]

• coreference [McCallum and Wellner, 2004]

It’s becoming more common to see approximate inference
methods, like those used in graphical models, for dealing with
z(w, x̃i) and ∂z

∂wj
.
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Useful Extension of CRF-Like Models

Sometimes some of the annotation is missing!

Perhaps:

• we believe the annotators could have used more fine-grained
labels [Matsuzaki et al., 2005, Petrov et al., 2006].

• we believe there are structural patterns that help explain the
phenomenon, but we are agnostic about the details
[Wang et al., 2007, Das and Smith, 2009],

• or we think humans are incapable of finding or agreeing about
those patterns [Blei and McAuliffe, 2008].
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CRF-Like Models with Latent Variables

If the missing structure is not the essential desired output, i.e., X
and Y are observed but some connection between them is missing,
we can generalize CRFs (and related) to permit latent variables,
here denoted Z.

p(y | x) =
∑
z∈Z

p(y, z | x) (26)

=
∑

z∈Z exp w>g(x,y, z)∑
y′∈Y,z∈Z exp w>g(x,y′, z)

(27)
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Example

Cats prefer to avoid the water.

Cats hate getting wet.

? paraphrase

Cats prefer to avoid the water.

Cats prefer running water.

? not paraphrase
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CRFs

Pros: probabilistic interpretation (builds on graphical models),
extends to latent variable models, flexible regularization

Cons: restricted to log-loss approximation to 0-1 loss on y,
requires z(w, x̃i)

Bottom line: most promising for scenarios where we wish to
preserve uncertainty/ambiguity, but computationally expensive.
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Discriminative Structure Models (Take 3)

Structured perceptron [Collins, 2002]:

w← w + g(x̃i, ỹi)− g(x̃i, h(x̃i)) (28)

Usually weight vectors over all iterations are averaged or (more
expensively) a vote is taken, to deal with the problem of oscillation.
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Structured Perceptron

It’s very easy to implement. What is it doing?

Let 6 Yi denote {y ∈ Y | y 6= ỹi}.

• It’s searching for a hyperplane in Rd that puts {g(x̃i, ỹi)}Ñi=1

on one side and {g(x̃i,y) | y ∈6 Yi}Ñi=1 on the other.

• It will find such a hyperplane, eventually, if one exists.

• This implies the use of 0-1 loss: every output in 6 Yi is equally
bad.
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Structured Perceptron

g(x, y*)
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Structured Perceptron

Pros: easy to implement, only need a decoder

Cons: brittle loss function (0-1), no built-in mechanism to avoid
overfitting

Bottom line: try this first, once you have a decoder, to see if your
features make any sense at all.
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Discriminative Structure Models (Take 4)

Recall from classification: the perceptron finds some hyperplane,
while SVMs look for one with a wide margin.

Rationale: wide margins are expected to generalize better.

Further, we’d like to take into account alternative loss functions,
not just 0-1.

(Note: SVMs often make people think about kernels. Kernels in
structured prediction are a hot topic, but out of scope.)

116 / 169



Large Margin Structured Classifiers
General setting [Taskar et al., 2003, Tsochantaridis et al., 2005]:

min
w∈Rd,ξ≥0

1
2
‖w‖2 + C

Ñ∑
i=1

ξi (29)

{ξi}i are slack variables that express the extent to which the model
doesn’t do the “right thing” on instance i. The constraints can be
(∀y, i):

w>
(
g(x̃i, ỹi)− g(x̃i,y)

)
≥ (30)

`(y, x̃i, ỹi)− ξi,y margin rescaling

1− ξi,y
`(y,x̃i,ỹi)

slack rescaling version

0 reminiscent of perceptron

Exponentially many constraints! M3Ns are a variant with margin
rescaling that exploit factored g and `.

117 / 169



Hyperplane View, Again

g(x, y*)
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Objective, Again

Collapsing the ξ (margin rescaling version):

min
w∈Rd

1
2‖w‖

2 + C
∑Ñ

i=1

(
−w>g(x̃i, ỹi) (31)

+ max
y∈Y

(
w>g(x̃i,y + `(y, x̃i, ỹi)

))
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Loss-Augmented Decoding
Recall standard decoding:

h(x) = argmax
y∈Y

w>g(x,y) (32)

Loss-augmented decoding (additive, used with margin rescaling):

h′(x,y) = argmax
y′∈Y

w>g(x,y′) + `(y′,x,y) (33)

Manageable if g and ` factor the same way; exploited by M3Ns.

Multiplicative version (used in slack rescaling):

h′(x,y) = argmax
y′∈Y

w>g(x,y′)× `(y′,x,y) (34)

Usually intractable.
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Implementation

Specialized algorithms have been developed for both the M3N and
SVMstruct variations:

• Subgradient methods [Ratliff et al., 2006] and cutting planes
[Tsochantaridis et al., 2005], both of which rely on
loss-augmented decoding.

• For M3Ns, dual extragradient [Taskar et al., 2005],
exponentiated gradient [Bartlett et al., 2004].

• “Passive-aggressive” online algorithms [Crammer et al., 2006];
connection to objectives not entirely clear, but one version is
very close to subgradient with C → +∞.
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“Passive Aggressive” Online Learners

Rather than starting from the objective function, these start with
the perceptron update idea and try to augment it with loss,
margin, and/or regularization. See [Crammer et al., 2006].
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Large Margin Structured Classifiers

Pros: loss function flexibility, lots of recent advances in making
training feasible, flexible regularization (in principle)

Cons: can require loss-augmented decoding, no probabilistic
interpretation

Bottom line: best approach in theory, and becoming more and
more usable.
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CRFs Approximate Structured SVMs.

Assume 0-1 loss. We can substitute the ξ in the structured SVM
objective to get:

1
2
‖w‖2 + C

Ñ∑
i=1

−w>g(x̃i, ỹi) + max
y∈Y

w>g(x̃i,y) (35)

≈ 1
2
‖w‖2 + C

Ñ∑
i=1

−w>g(x̃i, ỹi) + log
∑
y∈Y

exp

︸ ︷︷ ︸
softmax

w>g(x̃i,y)

So with the softmax approximation, we get the CRF objective,
with quadratic regularization.
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What’s Special about Structured NLP?

• Good features are worth a lot; they often come from
linguistics.

• Inference is expensive, so scalability and fast convergence are
important.

• Robustness to imperfect data is important.

• Robustness to inexact inference (including decoding) is also
important.

• All things equal, CRFs and large-margin classifiers are both
state-of-the-art, though generative models often sneak in as
“features.”
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Connection to (Weighted) Grammars

For several decades, much of NLP was about engineering
grammars for analyzing these structures.

The ambiguity problem led us to statistics.

Grammars can be used to impose hard constraints (i.e., define Y)
or soft ones (weighted features) within a structured prediction
model.

Examples of other grammar classes made into statistical models:
[Schabes, 1992, Abney, 1997, Clark and Curran, 2007].
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Current Challenges

• Adapting across domains (D̃ and Ḋ come from different
distributions)

• Coping with data sparseness: smoothing, regularization,
feature selection

• Noise or uncertainty in annotations

• Dependence on annotation conventions

• Handling features and loss functions that do not factor
(approximate structured inference)

• Training expense makes tuning of regularization constants,
feature selection, and other “meta-training” onerous.
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Break #2 (10 minutes)

Next up: Unsupervised structured natural language processing
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Unsupervised Structured NLP
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Recap

• We’ve seen a bunch of NLP problems presented as structured
prediction problems.

• We’ve discussed the (generic) problem of decoding (i.e.,
making a prediction).

• We saw a bunch of learning methods for learning these
predictors, supervised.

• Next: How to learn the prediction model from unlabeled data.
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Learning Setting

Training data: D̃ = 〈x̃1, x̃2, . . . , x̃Ñ 〉

Testing data: Ḋ = 〈〈ẋi, ẏi〉〉Ṅi=1
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Why “Un,” Not “Semi”?
Semisupervised learning: some annotated training data and a
large set of unannotated training data.

There are many approaches to this. In practice, they mostly boil
down to one of:

• Combining a supervised objective and an unsupervised
objective

• Using unlabeled data to create features or regularization terms
for supervised learners

• Bootstrapping algorithms that gradually modify the training
dataset for a supervised learner

• Unsupervised learning with constraints obtained from the
annotated data

So we consider “pure” unsupervised learning, both for use on its
own and within semisupervised learning.
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How Unsupervised is Unsupervised?

For any talk on unsupervised NLP, there will be at least one
member of the audience left unconvinced about whether the
approach was “really” unsupervised.

We will use the term broadly—if unconventionally—to mean that
the training data are incomplete. Sometimes the “missing parts”
are not intrinsically interesting (often called “latent-variable”
models), but sometimes they are the desired output (what most
people call “unsupervised”).
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Notation

X: set of possible inputs, often X = Σ∗

X: random variable taking values x ∈ X

Y: set of possible outputs, unseen even during training

Y: random variable taking values y ∈ Y
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Expectation-Maximization

Most people’s first exposure comes from mixtures of Gaussians for
clustering data in Rd.

Assume a generative model p ∈ P over X× Y.

MLE:

max
p∈P

Ñ∏
i=1

p(x̃i) ≡ max
p∈P

Ñ∑
i=1

log p(x̃i) ≡ max
p∈P

Ñ∑
i=1

log
∑
y∈Y

p(x̃i,y)

(36)

135 / 169



EM
EM can be seen as a coordinate ascent algorithm that alternates
between choosing p ∈ P and auxiliary distibutions qi ∈ Q.

max
p∈P,{qi}Ñi=1∈Q

Ñ∑
i=1

log p(x̃i)−DKL(qi‖p(· | x̃i)) (37)

The E step optimizes with respect to each qi, holding p fixed, by
solving

qi(y)← p(y | x̃i) (38)

The M step optimizes p, holding the qi fixed; the result looks just
like supervised MLE for family P with fractional counts for y
values:

max
p∈P

Ñ∑
i=1

∑
y∈Y

qi(y) log p(x̃i,y) (39)
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Structured EM (E step)

In structured prediction, Y is huge, so qi needs to be represented
compactly, usually using sufficient statistics. In NLP, the E step
almost always uses dynamic programming.

The sufficient statistics usually look a lot like ∂z
∂wj

, and the

algorithms are almost identical to those for CRF models.

137 / 169



Structured EM (M step)

Making the M step efficient generally requires us to restrict P to
be a relatively simple family, e.g., stochastic grammars.

EM for HMMs—”Baum-Welch training”—is one of the earliest
examples of EM.
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One Interpretation of EM

EM is just trying to accomplish:

max
p∈P

Ñ∑
i=1

log
∑
y∈Y

p(x̃i,y) (40)

The whole algorithm can be derived from the above; typically:

• The E step exploits independence assumptions in p(x̃i, y).

• The M step manages the constraint that p ∈ P.

Alternative optimization methods are possible!
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Examples of EM for NLP

• Context-free grammars [Carroll and Charniak, 1992]

• Word alignment [Brown et al., 1993]

• Part-of-speech tagging [Merialdo, 1994]

• Coreference resolution [Charniak, 2001]

• Bracketing structure [Klein and Manning, 2002]

• Dependency structure [Klein and Manning, 2004]
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EM for NLP

• Generative models that work in supervised mode often fail
unsupervised [Carroll and Charniak, 1992].

• Success is most probable when the problem is highly
constrained, the initialization is carefully designed, and/or the
model comes with strong bias.

• Rich features pose a problem, because MLE for generative
log-linear models over X× Y have complicated, possibly
divergent z.
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Discriminative, Unsupervised Learning?

This is sort of a contradiction.

Unsupervised learning assumes that 〈ỹi〉Ñi are unknown.

Discriminative learning aims to minimize loss on training data,
training toward 〈ỹi〉Ñi , the missing information. So loss of any
hypothesis y is also unknown.

One way of mixing discriminative methods with unsupervised
learning: contrastive estimation, which maximizes
p(X = x | π(X) = π(x)) [Smith and Eisner, 2005]
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Contrastive Estimation

MLE for generative log-linear models with hidden variable Y:

max
w

Ñ∑
i=1

log p(x̃i) ≡ max
w

Ñ∑
i=1

log

∑
y∈Y exp w>g(x̃i,y)∑

x∈X

∑
y∈Y exp w>g(x,y)

(41)

Numerator is like z for CRFs (expensive). Denominator is even
worse!

Idea: make this a conditional model by conditioning against a
variable N that constrains X:

max
w

Ñ∑
i=1

log p(x̃i | ñi) ≡ max
w

Ñ∑
i=1

log

∑
y∈Y exp w>g(x̃i, ñi,y)∑

x∈ñi

∑
y∈Y exp w>g(x, ñi,y)

(42)
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Contrastive Neighborhoods for Sentences

This 
sentence is 

grammatical.

Sentence is 
grammatical.

This is 
grammatical.

This 
sentence 

grammatical.

This 
sentence is.

Sentence this 
is 

grammatical. This is 
sentence 

grammatical.

This sentence 
grammatical is.
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The Linguistic Intuition Behind
Contrastive Estimation

x̃i is a positive example (e.g., a sentence).

Any grammatical sentence suggests implicitly that a certain set of
sentences is ungrammatical (or less grammatical), namely, those
that are perturbations of it. We call these the neighborhood; for
x̃i, they are ñi ⊆ X.

On average, ñi should be less good than x̃i. Instead of simply
making x̃i more likely, we make it likely at the expense of ñi.

Depending on how we represent ñi, we can make learning efficient
(dynamic programming).
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Bayesian Methods in NLP
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Bayesian Methods in NLP

The general idea is to manage more of our uncertainty; not just
about y, but also about w. There are two flavors for models:

• Parametric approaches: dimensionality of w, features, and Y

are all assumed known.

• Nonparametric approaches: richness of the model depends
on the data.

There are two methodologies:

• Full Bayesian: write down prior, do inference on the data.

• Empirical Bayesian: estimate parameters of prior from data.
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Bayesian Unsupervised Structured
Prediction

(I use the linear model notation.)

p(x | v) =
∫ ∑

y∈Y

p(x,y | w)p(w | v)dw (43)

• Full Bayesian: write down v, figure out distribution over y
(and maybe w).

• Empirical Bayesian: estimate v from data.
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Bayesian Unsupervised Structured
Prediction

p(x | v) =
∫ ∑

y∈Y

p(x,y | w)p(w | v)dw (44)

Common choices for v:

• Dirichlet distribution(s) [Blei et al., 2003,
Goldwater and Griffiths, 2007, Johnson et al., 2007]

• (Hierarchical) Pitman-Yor process
[Teh, 2006, Goldwater et al., 2006]

• Logistic normal distribution(s)
[Blei and Lafferty, 2006, Cohen et al., 2008]
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Example: Latent Dirichlet Allocation
Model [Blei et al., 2003]

X: (Σ∗)∗ (document collection)

Y: ({1, . . . ,K}∗)∗ (“topic” for each word token) and (4K)∗ (topic
distribution per document)

w: β = {βx|y}x∈Σ,y∈{1,...,K} are word distributions given topics, θ
are document-specific topic distributions

v: Dirichlet distributions over θ

p(x,y,w | v) = Dirichlet(θ | v)
n∏
i=1

θyiβxi|yi
(45)

Empirical Bayes: learn v and β
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Examples of Bayesian NLP

• Topic models [Blei et al., 2003]

• Word segmentation [Goldwater et al., 2006]

• Part-of-speech tagging [Goldwater and Griffiths, 2007]

• Syntactic category refinement
[Liang et al., 2007, Finkel et al., 2007]

• Dependency parsing [Cohen et al., 2008]

• Coreference resolution [Haghighi and Klein, 2007]
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Approximate Inference

In principle, the challenge is the same as approximate inference for
supervised CRFs with non-local features.

Here, there are usually integrals thrown into the mix, to deal with
w (which is continuous).

Variational inference is widely used and often exploits dynamic
programming with structured y [Cohen et al., 2008].
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Uncertainty About Bayesian NLP

While mathematically elegant, Bayesian methods haven’t yet
revolutionized NLP.

Pros: a “language” for talking about hidden structure and
modeling it, as well as breaking independence assumptions; generic
techniques for (approximate) inference and learning, priors could
be a way to encode knowledge

Cons: many approximations for efficiency, not always clear how to
encode linguistic knowledge in priors
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A New Twist?

We’ve discussed how lots of NLP problems can be transformed
into the language of machine learning, using structured prediction.

If you consider hierarchical generative models (Bayesian or not),
they begin to look like grammars.

Do probabilistic grammars offer a platform for describing graphical
models? See, e.g., [Johnson et al., 2006].

Credit for suggesting this idea goes to Mark Johnson.
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Important Points About Unsupervised
Learning

• In unsupervised learning, the objective function is usually not
convex (but see [Xu et al., 2006]) ; we mainly hope for local
optima. Initialization can therefore be very important.

• Local optima seem to explode combinatorially because of
symmetries among models.

• Bias (priors, constraints, contrast neighborhoods, etc.): very
important for avoiding degenerate solutions.

• Unsupervised NLP is basically like unsupervised everything
else, only harder.
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Tutorial Summary

• Discussed linguistic analysis problems that are examples of
structured prediction.

• Presented algorithmic tools used for making structured
predictions (decoding).

• Presented the dominant techniques used in NLP for learning
to make structured predictions from

• complete data (supervisedly) and
• incomplete data (unsupervisedly).
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Themes

NLP is a great proving ground for ML ideas.

NLP “tasks” only partially fit ML expectations: loss, assumptions,
and even the output space are always up for debate.

Separating models from learning algorithms and both from
inference methods and loss functions has some advantages, and
NLP is headed in that direction.

Further abstraction: availability of annotated/unannotated training
data, and how much you trust it.
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