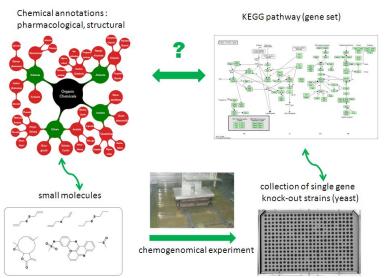
A Subgroup Discovery Approach for Relating Chemical Structure and Phenotype Data in Chemical Genomics


Lan Umek¹, Petra Kaferle², Mojca Mattiazzi², Aleš Erjavec¹, Črtomir Gorup¹, Tomaž Curk¹, Uroš Petrovič² and Blaž Zupan^{1,3}

- 1 University of Ljubljana, Faculty of Computer and Information Sciences
- 2 Jožef Stefan Institute
- 3 Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, USA

Ljubljana, 6. 9. 2009

Motivation

► Relate chemical structure and *KEGG* (Kyoto Encyclopedia of Genes and Genomes) pathways

Data set

- results of 71 chemogenomics experiments
- phenotype profile (4262 features): fitness (growth rate) of budding yeast Saccharomyces cerevisiae mutants when exposed to each of small molecules
- drug characterization: 126 structure-based features (obtained from *Dragon* software)

biological activity (tables \$1 and \$2). The street

to that of approved drugs (fig. \$1). We also

awayed the effects of various environmental

The Chemical Genomic Portrait of Yeast

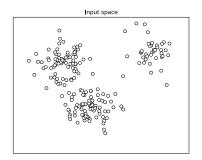
Uncovering a Phenotype for All Genes

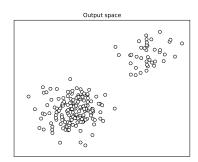
Sample from the data

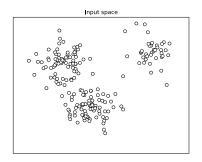
	Input features			Output features		
	Structu	ire of smal	I molecule	Mutan	t-based	fitness
small molecule	# of N atoms	# of S atoms	Partition coefficient	YGL234W	YCL010C	YPL212C
mycophenolic acid	0	0	2.60	?	?	-0.97
BCNU	3	0	0.80	0.23	0.26	-0.23
rotenone	0	0	1.90	1.40	0.16	-0.35
papuamide B	13	0	-6.10	-0.45	0.15	-0.21

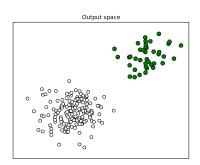
Problem

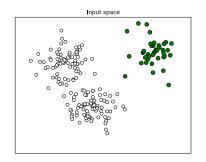
- find interesting subgroups of experiments=(small molecules, phenotype profiles) where
 - experiments in the subgroup have similar phenotype profile in some specific subset of mutants (KEGG pathway),
 - the small molecules in the subgroup can be reliably discriminated from other small molecules in the data set using structural descriptors
- ▶ relate chemical structure and phenotype profile

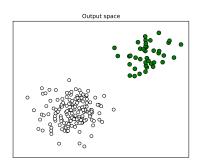

Related work

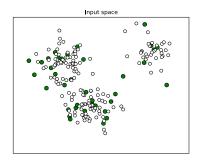

- subgroup discovery (one discrete outcome variable)
 - W. Klősgen: Applications and Research Problems of Subgroup Mining (1999)
 - D. Gamberger, N. Lavrač: Expert–Guided Subgroup Discovery (2002)
 - E. Suzuki: Undirected Exception Rule Discovery as Local Pattern Detection (2004)
 - B. Kavšsek: APRIORI-SD: Adapting Association Rule Learning to Subgroup Discovery (2006)
 - ► A. Knobbe: Exceptional Model Mining (2008)
 - X. Su: Subgroup Analysis via Recursive Partitioning (2009)
- multilabel prediction (prediction of several discrete variables)
 - ► H. Wold: Partial Least Squares Regression (1985)
 - H. Blockeel: Top-down Induction of First Order Logical Decision Trees (1998)
 - ▶ B. Ženko: Learning Predictive Clustering Rules (2007)

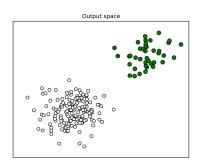


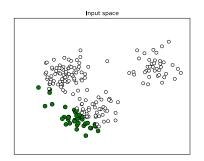

Our approach

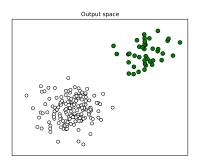

- an extension of the original subgroup discovery task
- assumes several outcome variables (of mixed types)
- does not seek for general prediction classification model (multilabel prediction)
- ▶ integrates information from several data-bases (KEGG, MeSH,...)

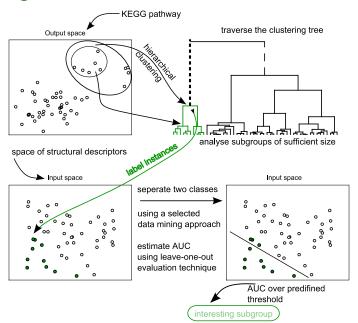


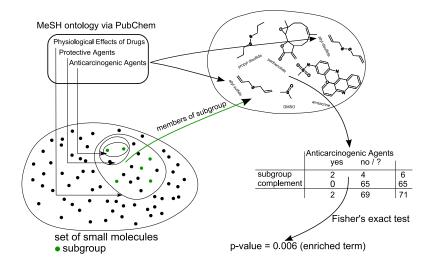










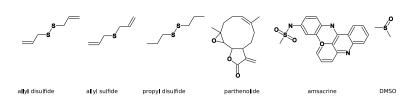

Search algorithm

Dissimilarity measure and classifiers

- ▶ clustering
 - weighted Manhattan metric for clustering in the space of a selected KEGG pathway
 - 98 different (KEGG pathways) were used (covering 760 genes in total)
 - ► Ward's linkage
- supervised data mining approach
 - support vector machines with linear kernel

Enriched MeSH (Medical Subject Headings) terms

Example of the result


- ▶ subgroup of six small molecules (AUC = 0.76)
- ► KEGG pathway: cell-cycle

Enriched chemical terms:

• disulfides and allyl compounds (p = 0.0048)

Enriched pharmacological action terms:

- ▶ anticarcinogenic agents (p = 0.0055)
- ▶ protective agents (p = 0.0161)

Overview of the results

size	AUC	pathway	chemical classification	pharmacological classification
5	0.855	nitrogen metabolism	sulfur compounds	myeloablative agonists
				toxic actions
5	0.855	ubiquinone biosynthesis	hydrocarbons, halogenated,	antineoplastic agents
			nitrogen mustard compounds	alkylating
7	0.819	biosynthesis of steroids	disulfides	none
5	0.782	drug metabolism		
		other enzymes	urea	none
5	0.779	alanine and aspartate		
		metabolism	disulfides	none
6	0.756	cell cycle - yeast	disulfides, allyl compounds	protective,
				anticarcinogenic agents
6	0.756	folate biosynthesis	azirines, sulfur compounds	antineoplastic,
				alkylating agents
8	0.752	one carbon pool	allyl compounds	protective, antineoplastic,
		by folate		anticarcinogenic agents

Conclusions

- subgroup discovery method
 - requires data instances with two-sets of descriptors
 - suitable for applications with data-rich domain
- demonstration of utility on a problem from chemical genomics
 - identification of subgroups of small molecules with similar effects on known gene sets (mutant-based phenotypes)

Ongoing work

Problems:

- small data sets
- selection of the small molecules

Ongoing work:

- comparison of the results with different approaches
- automated rating of hypothesis interestingness (PubMed)