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e Goal = classification with high accuracy.

e Thousands of genes.

e Few number of examples
— Generally (50 to 100)

e Huge volumes of data in the form of microarrays.

e Humanly not possible to go-through and analyse the data.
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e Consider a binary classification problem with two classes
C=1{+1-1]

where an example is characterized by feature vector Z€ R,
and a label ¥ € C |

* An example x is classified as:

f (x) = argmax, (p(C, /X))

Accuracy-Rejection Curves (ARCs) by M.Sajjad-Ahmed NADEEM



Gene 2

Gene 1

Low-confidence predictions cause high error rates.

Is improvement possible?
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Chow [Chow, 1970], Fumera et al. [Fumera et al., 2000],

Dubuisson and Masson [Dubuisson and Masson, 1993],

Landgrebe et al. [Landgrebe et al., 2006],

Li and Sehi [Li and Sethi, 2006],

Hanczar et al. [Hanczar et al., 2005]

Friedel et al. [Friedel et al., 2005]

and others worked on and proposed good methods of classification.

* Are these methods applicable on biomedical data?
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e Existing data about fatal diseases like cancer etc. are
available in the form of gene expression microarray.

e For anumber of problems in biomedical field, existing
methods of classification don’t perform good enough to be
used to make predictions.

Making predictions about a person on the basis of his/her
gene profile about a disease.

e |ts crucial to separate patients and non-patients especially in
cancer like diseases.
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e Declaring a potential patient as non-patient and vice versa
can be extremely harmful.

 High accuracy is required. Generally a system with 85% or
more accuracy is acceptable.

e Performance of a classifier depends heavily on data.

How to proceed in such cases?
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A physician refrains from therapy when (s)he is not confident enough
in diagnosis.

This theory can be applied while making predictions on biomedical
data.

Responders

Prediction

" Non resépondeféw

Model .

Classification with Reject Option /

@ Test data

N

Accuracy-Rejection Curves (ARCs) by M.Sajjad-Ahmed NADEEM 10




Lim& Bip == Inserm  [EBE 4
Institut de recherche
pour le dé

Insttut national

Gene 2

Accuracy-Rejection Curves (ARCs)

by M.Sajjad-Ahmed NADEEM

11



T
|9

e ) a B
WWile

©

e Consider a binary classification problem with two classes
C={+1-1}

where an example is characterized by feature vector ze R
and a label y € C.

e Asample xis accepted only if the probability that x belongs
to C. is higher than or equal to a given probability threshold t

() argmax. (p(C;/x)) if max(p(C;/x)) >t
(%)= reject if p(C,/x)<tV,
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Comparing Classifiers with

Reject Option: (1/3)

 Performances of classifiers are measured by their accuracy to
predict the true class.

 Performance of a classifier depends heavily on the data.

 With reject option, the accuracy depends on the reject rate
also. More rejection results in more better accuracy.
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Comparing Classifiers with
Reject Option: (2/3)
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 Pure Synthetic data:

— Artificially generated data with user defined parameters .

 Synthetic data:
— Artificially generated data with parameters computed from real microarray
datasets.
— Colon Cancer Data [Alon et al., 1999].
— Lymphoid Malignancy [Shipp et al., 2002].
— Leukemia [Golub et al., 1999].
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* Inreal microarrays the number of samples remain very few.

* |t becomes hard to effectively learn from few number of
samples.

 Less number of test samples hinder to comprehensively test
the built model.
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 Pure Synthetic Data:

User defined parameters.

2 class classification problem where each class follows Gaussian distribution.
Equally likely class distribution.

Class conditional densities are N(z4;0,2) and N (u,;0,Z) where

For co-related data the covariance matrix of each class has a block structure

like Z B .

Adding noise

e Synthetic data from real Microarray data:

Parameters are estimated from real data using Expectation Maximization (EM)
algorithm.

2 class classification problem.
Equally likely class distribution.
Adding noise
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 Parameters-Pure Synthetic data:

Parameter description Parameter Numeric values used

Sample size train n 50, 100, 200

No. of Gaussians per class G 1,2

No. of Boxes/cluster of features B.e 1,2,4,5,10
Rejection Area Ruin 0.2%,0.4%,... 100%

 Parameters- Synthetic data from real Microarray data:

Parameter description Parameter Numeric values used

Sample size train n 50, 100, 200

No. of Gaussians per class G 1,2

Rejection Area Ruin 0.2%,0.4%,... 100%
Mu and sigma Calculated from real data
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e Synthetic data from Colon

Cancer.
e (Gaussian per class = 5.
. Train =200

e  Test= 10000

*  Total Features =400

. Noise Features = 390

* Noise free Features = 10
e  Selected Features=40

From 3% abstention
onwards QDA performs
better than SVM Radial.

0 to 60% abstention SVM
Radial performs better
than LDA but after 60%
vice versa.
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«  Non-Linear (SD2=5D1/2) S -
*  Correlated Features
e Gaussians=1

* Train =100

*  Test=10000 L
*  Total Features =400

. Noise Features = 380

*  Noise free Features = 20
*  Selected Features =20

Accuracy In %
90
]

From 19% abstention

onwards SVM Linear — SVMRadial

performs better than 81 S T2 --- SVMLinear
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e Linear (SD1=SD1)

. Non Correlated Features
. Gaussians =1

. Train =50

. Test=10000

*  Total Features =400

. Noise Features = 380

. Noise free Features = 20
e  Selected Features =20

From 58% abstention
onwards LDA performs better
than SVM Linear.

From 60% abstention
onwards RF performs better
than SVM Radial.
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Block SDR = Synthetic Data from Real Patients’ data
(Non 100 T3 T2 T1, T2 T1

§-Ahmed NADEEM 26
Correl) 700 T2, T3 T2 T2 T1, T2



y - thématgues i

n:ﬂﬁl Iﬂﬂ:ﬁ“ o_ rnnn
LJIOVCUOOIVITI O WUIIU

Obtaining T1,T2, T3 types of Accuracy-Rejection Curves may be

beneficial in the selection of appropriate classification method
for a given data.

For a problem in hand, a measure (desired accuracy, acceptable
rejection rate) should be known.

For desired accuracy: move horizontally on ARCs plot and select
the available classifier with least rejection rate.

For fixed Rejection rate: Select the classifier with maximum
prediction accuracy.

Abstention considerably enhances prediction performance of
some algorithms (LDA, KNN, RF) compared to others.
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Experiments on real data

Behavior of ARCs with Bagging , Boosting .

ROC curves and ARC curves.
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1. Generate class-labeled train data {50, 100 or 200 examples}, test
data {10000 examples} and a total of 400 features.

2. Apply t-test feature selection on train data and select 20 or 40 best
features from train data and reduce train data to selected features.

3. Reduce test data to selected features.

4. Apply one of most widely used classification rule for microarray
analysis to build a classification model based on train data.

5. Compute true error/rejection rates of the underlying model.

Repeat step 5 for all sizes of rejection windows {0.2; 0.4; 0.6;
...100}

7. All steps 1-6 iterated 100 times.
8. Final result is averaged from all iterations.
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Table 2. Summary of constants as parameters of the experiments based on pure syn-
thetic data.

Test sample size Mg 10000 (5000 per class)
Variance of class C'1 for Linear problem OLC1 3

Variance of class C2 for Linear problem OLC2 3

Variance of class C'1 for non-linear problem oxren 3

Variance of class C2 for non-linear problem oxr 12 ONLL2 = ONLL1/2
No. of noise free features D¢ 20

No. of noise features Dy, 380

Total features D= Dys+ Dy 400

Selected features D, 20

Correlation coefficient p 0.5

No. of Iterations Nits 100
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Table 4. Summary of constants as parameters of the experiments based on synthetic
data from colon cancer, lymphoid malignancy, and .

Test sample size Nig 10000 (5000 per class)
No. of noise free features from real mic. data D,eq 10

No. of noise {ree leatures Dy s 10

No. of noise features D, 390

Total features D= Dyns+ Dy 400

Selected features D e 40

No. of Iterations Nits 100
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mC1 <- array of means of all features for class +1
sdC1 <- array of standard deviations of all features for class +1

mC2 <- array of means of all features for class -1
sdC2 <- array of standard deviations of all features for class -1

scores4AllFeature <- ( abs(mC1-mC2)/ (sdC1 + sdC2) )

sortedScores4AF <- sort (scores4AllFeature, decreasing=TRUE)
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