
Semantic Web Service Retreat

Towards verifying compliance in Semantic
Web service compositions

Monika Solanki

Joint work with

Alessio Lomuscio, Hongyang Qu

Imperial College London
London, UK

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Semantic Web Service Retreat

Outline

1 Background

2 Temporal deontic interpreted systems

3 Specifying behavioural compliance

4 The motivating example

5 Specifications

6 Analysis and verification

7 Conclusions

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Background Semantic Web Service Retreat

Background

Web services (WS) are one of the leading paradigms
underlying application integration.

When several subsystems coordinate in an open
environment the end result may be much less predictable.

Multi-agent systems (MAS) serves as a useful metaphor
for reasoning about the services provided by “autonomous
components acting rationally to maximise their own design
objectives”.

Contracts are a useful concept to govern and regulate
MAS and agent implementations of WS.

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Background Semantic Web Service Retreat

Background

Verification of WS is an active topic of research.

However it has so far been concerned with checking safety
and liveness properties only.
However when WS are phrased as a contract-regulated
MAS there are other properties that seem worth studying
i.e.

various notions of correctness/violations of the contracts
during a run
the evolution of the agents’ knowledge about themselves
the contracts and the expected peers’ behaviours, etc.

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Background Semantic Web Service Retreat

In this talk...

We explore the problem of specification and verification of
compliance in agent based Web service compositions.

We use the formalism of temporal-epistemic logic suitably
extended to deal with compliance/violations of contracts.

We illustrate these concepts using a motivating example
where the behaviours of participating agents are governed
by contracts.

The composition is specified in OWL-S and mapped to our
chosen formalism.

Finally we use an existing symbolic model checker to verify
the example specification whose state space is
approximately 221 and discuss experimental results.

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Background Semantic Web Service Retreat

The Verification problem

Given a system S and a property φ, ascertain that

S |= φ

All behaviours of S satisfy φ
Some proposed techniques:

Simulation and Testing: full coverage not guaranteed.
Algorithmic verification.
Deductive verification.
Abstraction.

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Background Semantic Web Service Retreat

Model Checking

An algorithmic verification technique,

- applied to (not too big) finite state systems.

- fully automatic, low computational complexity.

- performs an exhaustive search of the state space of the
system in order to establish whether a specification holds.

Explicit representation of the system as labelled directed
graphs leads to “state explosion” - works only for systems
with a small state space.

Symbolic Model Checking : the system and the
specification formulas to be checked against are
represented as Boolean formulas and then encoded
canonically as OBDDs.

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Temporal deontic interpreted systems Semantic Web Service Retreat

Temporal Deontic Interpreted Systems

A system is composed of a set of agents A = {1, ...,n} and
an environment e.
Each agent is described by

A set of local states Li ,
A set of local actions Acti ,
A local protocol function P : Li → 2Acti .
An evolution function τi : Li × Act → Li .

Particularly, the set of local states Li is partitioned into two
subsets: green states Gi and red states Ri .

A path π = (s0, s1, . . . , sj) is a sequence of possible global
states such that (si , si+1) ∈ T for each 0 ≤ i ≤ j .

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Temporal deontic interpreted systems Semantic Web Service Retreat

Models

A model M = (S, I,T ,∼1, . . . , ∼n,h) is a tuple such that:

S ⊆ L1×, . . .× Ln × Le is the set of global states for the
system,

I ⊆ S is a set of initial states for the system,

T is the temporal relation for the system defined as
τ1×, . . .× τn × τe,

For each agent i ∼i is an epistemic indistinguishably
relation defined by (l1, . . . , ln, le) ∼i (l ′1, . . . , l

′

n, l
′

e) if li = l ′i .

h : P → 2S is an interpretation for the set of propositional
atoms P.

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Temporal deontic interpreted systems Semantic Web Service Retreat

Temporal epistemic logic with correctness

Syntax

φ ::= p|¬φ|φ ∧ ψ|Kiφ|EXφ|EFφ|EφUψ|EGφ.

Satisfaction
(M, s) |= p iff s ∈ h(p);
(M, s) |= ¬φ iff (M, s) 6|= φ;
(M, s) |= φ ∧ ψ iff (M, s) |= φ and (M, s) |= ψ;
(M, s) |= EXφ iff there exists a path π starting at s such that
(M, π(1)) |= φ.
(M, s) |= EGφ iff there exists a path π starting at s such that
(M, π(k)) |= φ for all k ≥ 0;
(M, s) |= EφUψ iff there exists a path π starting at s such
that for some k ≥ 0 (M, π(k)) |= ψ and (M, π(j)) |= φ for all
0 ≤ j < k ;
(M, s) |= Kiφ iff for all possible global states s′ if s ∼i s′

then (M, s′) |= φ.

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Temporal deontic interpreted systems Semantic Web Service Retreat

Epistemic modality

It is concerned with What does an agent “know”.

The epistemic accessibility relation of an agent is based on
the agent’s extended local states and on the environment
local states.

Intuitively, an agent “knows” something in a state of the
system if this something is true in all the states of the
system in which its local states and the observable
variables of the environment remain the same.

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Specifying behavioural compliance Semantic Web Service Retreat

Compliance
There exists a path in which agent i is always in compliance.

EGgi

In all paths agent i will always be in full compliance.

AGgi .

whenever agent i Whenever agent i is in compliance the state of affairs
φ holds in the system.

AG(gi → φ).

φ holds true whenever all agents in A′
⊆ A are in compliance.

AG(
^

i∈A′

gi → φ)

Whenever all agents in the system are in compliance φ holds.

AG(
^

i∈A

gi → φ)

An agent i knows that as long as agent j is in compliance a certain state
of affairs is always reachable in some way.

Ki(AG(gj → EXφ))

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Specifying behavioural compliance Semantic Web Service Retreat

Consequences of violations

Following a violation by agent i a certain state of affairs hold indefinitely
and that all other agents know this

AG(¬gi → AGφ) ∧
^

j 6=i

Kj(AG(¬gi → AGφ)).

Following a local violation, perhaps there is a way in the system for the
agent i to recover.

AG(¬gi → EFgi).

All agents always know that there is a way in the system for the agent i
to recover from a local violation.

AG(
^

i∈A

KiAG(¬gi → EFgi)).

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

The motivating example Semantic Web Service Retreat

The motivating example

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

The motivating example Semantic Web Service Retreat

The “Informal” Contract

Client C asks principle software provider PSP and software provider SP
to develop the software;

PSP and SP twice update each other and C about the progress of the
software development. C can request some changes in the software
before the second round of updates.

Every update is followed by a payment in part by the client C to the
PSP. Payment to SP is handled by PSP

PSP integrates the components developed by SP and send the
software to Testing agency T for testing.

After the software passes the test, C orders the hardware from
Hardware supplier and buy insurance from Insurance company I for the
software.

C asks PSP, SP, H and an Expert to deploy the software on the
hardware.

If the deployment succeeds, C sends the final payment to PSP and SP
for the development.

If the deployment fails, C asks I for the compensation.

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

The motivating example Semantic Web Service Retreat

Obligations of contract parties

PSP ’s obligations
1 Update SP and C twice about the progress of the software.
2 Integrate the components and send them to T for testing.
3 If components fail, integrate the revised software and send

them for testing.
4 Make payment to SP after successful deployment of

software.

C’s obligations
1 Request changes before the second round of updates.
2 Pay penalty if changes are requested after second round of

updates.
3 Make payment to the PSP after every update.

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

The motivating example Semantic Web Service Retreat

The possible violations

Agent Violation condition Recovery
PSP does not send messages to SP

and/or C in the first and/or second
run of update.

pay penalty charge

does not send payment to SP. no
SP does not send update messages to

PSP or C.
pay penalty charge

does not send its components to
PSP.

no

C request changes after second up-
date.

pay penalty charge or withdraw
changes

does not send the payment to PSP. no
T does not send the testing report to

C, PSP and/or SP.
no

H does not deliver the hardware sys-
tem to C.

no

ignores the deployment failure. no
E does not deploy the software on the

hardware system.
no

I does not process the claim of C. no

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

The motivating example Semantic Web Service Retreat

Modelling the example in OWL-S
define composite process SoftwareUpdate
(inputs: (firstUpdate - xsd:string
firstUpdateStatus - xsd:boolean
changes - xsd: string
UpdateStatus - xsd:boolean
furtherChanges - xsd: string
penalty - xsd:string
withdrawNotice - xsd:string)
preconditions :(hasContract(contractID)
& receivedFirstUpdate(firstUpdateStatus)
& hasChanges(firstUpdateStatus, changes)
& receivedSecondUpdate(secondUpdateStatus)
& hasFurtherChanges(secondUpdateStatus,furtherChanges)
& receivedPenaltyMessage(penalty))
outputs:(firstUpdateStatus - xsd:boolean
changes - xsd: string
secondUpdateStatus - xsd:boolean
furtherChanges - xsd:string
withdrawReceipt - xsd:string)
results :(
hasFurtherChanges(secondUpdateStatus,furtherChanges)
|-> output(penalty - xsd:string)
hasReceivedPenaltyMessage() and paidPenalty(penalty)
|-> output(penaltyReceipt -xsd:string)
hasReceivedPenaltyMessage() and withdrawChanges()
1-> output(withdrawChanges))
{ perform ReceiveFirstUpdate;
perform RequestChanges;?
perform AcceptFirstUpdate;
perform ReceiveSecondUpdate;
...}

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Specifications Semantic Web Service Retreat

Specifications (I)

Whenever PSP is in a state of compliance, he knows the contract can
be eventually fulfilled successfully.

AG(gPSP → KPSPEF (contractSucceed)) (1)

In some of the paths where C is always in compliance, he eventually
receives the software.

EG(gC ∧ EF (receiveSoftware)) (2)

In some of the paths where PSP is always in compliance, the software
can be eventually integrated and tested.

EG(gPSP ∧ gSP ∧ EF (softwareIntegrated)∧ EF (softwareTested)) (3)

PSP knows that for some paths, it is possible that whenever PSP, SP,
C, I, H, T and E are all in compliance, the software can be eventually
delivered.

KPSP(EG(gall → EF (softwareDelivered))), (4)

where gall represents gPSP ∧ gSP ∧ gC ∧ gT ∧ gH ∧ gE ∧ gI.

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Specifications Semantic Web Service Retreat

Specifications (II)

It is possible for C to be in compliance until the software is deployed
successfully but then entering a violation by not sending the final
payment to PSP.

E((gC ∧ EF (softwareDeployed))UEG(¬gC ∧ noPayment)) (5)

It is possible that SP is always in compliance before failing to provide
the component requested by the PSP.

E(gSPUEG(¬gSP ∧ componentNotProvided)) (6)

It is possible that PSP does not send the first update to C as per
schedule and only sends it after paying a penalty to C.

E(gPSPU ((¬gPSP ∧ noFirstUpdate)∧

EX ((gPSP ∧ payPenalty)∧ EX EG(gPSP)))) (7)

It is possible that C withdraws the request for change made after the
second update.

E(gC U ((¬gC ∧ illegalChangeRequest)∧ EF

(gC ∧ withdrawChangeRequest ∧ EXEG(gC)))) (8)

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Specifications Semantic Web Service Retreat

Advanced properties

Whenever PSP is in a compliance state, he knows the contract can be
eventually fulfilled successfully.

AG(PSP_green → KPSPEF (PSP_end))

There exists a path where C is always in compliance with the contract
until he eventually receives the software.

E(C_green U receiveSoftware)

PSP knows that it is possible that PSP, SP, C, I, H, T and E are all in
compliance until the software is delivered.

KPSP E(all_green U softwareDelivered),

where all_green represents PSP_green ∧ SP_green ∧ C_green ∧

T_Green ∧ H_green ∧ E_green ∧ I_green.

There is a trace in which the client is always in contract compliant states
until the software is delivered (while the client remains compliant)
before the client enters a violation.

E(C_green U E((C_green ∧ softwareDeployed) U ¬C_green))

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Analysis and verification Semantic Web Service Retreat

MCMAS

MCMAS is a symbolic model checker developed
particularly for multi-agent systems (MAS) to verify CTL,
epistemic, deontic and ATL formulae.

It takes as input a MAS specification and a set of formulae
to be verified

It evaluates the truth value of these formulae using
algorithms based on OBDDs (Ordered Binary Decision
Diagrams).

Whenever possible MCMAS produces counterexamples for
false formulae and witnesses for true formulae.

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Analysis and verification Semantic Web Service Retreat

Interpreted Systems Programming Language

MAS are described in MCMAS using a dedicated
programming language derived from the formalism of
interpreted systems .

ISPL- resembles the SMV language, characterises agents
by mans of variables and represents their evolution using
Boolean expression.

Two kinds of Agents: Standard and Environment.

Environment agent: similar to standard agents and used to
describe boundary conditions and infrastructure shared by
standard agents. They are not always needed to be
defined.

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Analysis and verification Semantic Web Service Retreat

Interpreted Systems Programming Language

In MCMAS each agent (including the environment) is
characterized by:

A set of local states (for instance the states “ready” or
“busy” for a re- ceiver) - defined in terms of local variables.

A set of actions (for instance “sendmessage” or “open
channel”.

A rule describing which action can be performed by an
agent in a given local state. We call this rule a protocol.

An evolution function, describing how the local states of
the agents evolve based on their current local state and on
other agents’ actions.

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Analysis and verification Semantic Web Service Retreat

Architecture of MCMAS

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Analysis and verification Semantic Web Service Retreat

MCMAS Home Page

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Analysis and verification Semantic Web Service Retreat

MCMAS Demo

Verifying the illustrative example

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

Conclusions Semantic Web Service Retreat

Conclusions

MAS serves as a useful metaphor for reasoning about the
services provided by “autonomous components acting
rationally to maximise their own design objectives”.

Contracts are a useful concept to govern and regulate
MAS and agent implementations of WS.

We address the issue of violation or non-compliance of
pre-defined behaviour when specified as SLAs, contracts
or protocols - specifically in a multi-agent scenario.

We used ISPL along with MCMAS to show the verification
of a service composition specified in OWL-S.

We used a reasonably complex example (221 states) to
verify at design time, temporal-epistemic properties of
services that capture the compliance levels of their
implementing agents.

Imperial College London Towards verifying compliance in Semantic Web service compo sitions

	Background
	The Verification problem
	Model Checking

	Temporal deontic interpreted systems
	Computationally grounded models
	Temporal epistemic logic

	Specifying behavioural compliance
	Compliance
	Consequences of violations

	The motivating example
	Modelling the example in OWL-S

	Specifications
	Analysis and verification
	Conclusions

