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 A Bayesian approach to GAS
 Bayesian networks in GAS
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Motivation: Exploring the variome

 Variome
 Single-Nucleotide Polymorphisms (SNPs)
 Copy-Number Variations (CNVs).
 Genome rearrangements 
 Methylome

 SNPs
 Number of SNPs (107 ->106)
 Correlation structure: the HAPMAP project



GWAS Data analysis candidate regions.
genes

PGAS s11 PGAS s12 PGAS s13

Study design  SNP datasets

PGAS Data analysis  confirmations
refutations
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Genome wide association study (GWAS)

GAS phases



GAS Facts
 Publications: ~40K
 SNPs on plate: 100K-2M
 Sample size:     30K

 Confirmed associations: 
 <1000
 Small attributable risk 

 Why?
 Common disease – common variance hypothesis 

- multifactorial diseases, many weak interactions
 Rare haplotype hypothesis (Minor allele freq. <1%)

 Number of  gene 
association studies
GWAS: ~100
 PGAS-: ~10K



Current challenge:
the discovery of epistasis

 Statistical epistasis: non-linear interaction of 
genes 

 The goal is the exploration of…
 explanatory variables of the target variable(s)
 the interaction of explanatory variables 

 Genetic association concepts can be formalized 
(partially) as machine learning concepts and as 
Bayesian network concepts



The model class: Bayesian networks
 directed acyclic graph (DAG)

 nodes – domain entities
 edges – direct probabilistic relations

 conditional probability models P(X|Pa(X))
 interpretations:

effective
representation
of  the distribution
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DAG structure:
dependency map
(d-separation)

edges:
direct causal
relations
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Bayesian network features representing 
relevance

 Markov Blanket (sub)Graphs (MBGs)
(1) parents of the node
(2) its children
(3) parents of the children

 Markov Blanket Sets (MBSs)
 the set of nodes which 

probabilistically isolate 
the target from the rest
of the model

 Markov Blanket Membership (MBM)
 pairwise relationship
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GA-to-BN

 (model-based) pairwise associationMarkov Blanket 
Memberhsips  (MBM)

 Multivariate analysis  Markov Blanket sets (MB)
 Multivariate analysis with interactions  Markov Blanket 

Subgraphs (MBG)
 Causal relations/models  Partially directed Bayesian

network (PDAG)

 Hierarchy
 DAG=>PDAG=>MBG=>MB=>MBM



Advantages of GA-to-BN - 1

 Strong relevance - direct association: Clear 
semantics and dedicated goal for the explicit. 
faithful representation of strongly relevant (e.g. 
non-transitive) relations

 Graphical representation: It offers better 
overview of the dependence-independence 
structure. e.g. about interactions and conditional
relevance.

 Multiple targets: It inherently works for 
multiple targets.



Advantages of GA-to-BN – 2

 Incomplete data: It offers integrated 
management of incomplete data within Bayesian 
inference.

 Causality: Model-based causal interpretation of 
associations

 Haplotype level: Offers integrated approach to 
haplotype reconstruction and association 
analysis (assuming unphased genotype data)



Challenges of applying BNs in GAS

 High computational complexity
 High sample complexity  Bayesian statistics

 Bayesian model averaging
 Feature posterior

 Goal: approximate the full-scale summation
(integral)

 A solution: Metropolis coupled Markov chain 
Monte Carlo (MCMCMC)
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Uncertainty in multivariate 
analysis

    

 

 

Entropy of the MBS posteriors
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Advantages of the Bayesian 
framework

 Automated correction for “multiple testing”
 The measure of uncertainty at a given level 

automatically indicates its applicability
 Prior incorporation: better prior incorporation both at 

parameter and structural levels.
 Post fusion: better semantics for the construction of 

meta probabilistic knowledge bases

 Normative uncertainty for model properties
(cf. bootstrap)



The basis for comparison

Our approach is a model based exploration of the 
underlying structure

(note: multiple targets, causal and direct aspects)

≠
Prediction of class labels



Comparison of GAS tools

Dedicated GAS tools

 BEAM
 BIMBAM
 SNPAssoc
 SNPMstat
 Powermarker

General purpose FSS tools

 MDR
 Causal Explorer
…



 moderate number of clinical variables (in the range of 50) 
 hundreds of genotypic SNP variables for each patient 
 thousands of gene expression measurements 

Asthma 
 Complex disease mechanism
 Half of the patients do not respond well to current treatments
 Unknown pathways in the asthmatic process

Application domain: The genomic 
background of asthna



Evaluation on an artificial data set

 Artificial model based on a real-world domain: 
the genomic background of asthma 

 The real data set consists of:
 113 SNPs
 1117 samples



The reference model 
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Results - 1 

Software 
(Parameters) Sensitivity Specificity Accuracy

BMLA  (CH) 1 0.99 0.99115044

BMLA  (BD) 0.92307692 1 0.99115044

HITON MB (k=1) 0.76923077 0.98 0.95575221

HITON MB (k=2) 0.76923077 0.99 0.96460177

HITON MB (k=3) 0.69230769 0.99 0.95575221

MDR – TurF 0.61538462 0.97 0.92920354

MDR – Relief 0.53846154 0.96 0.91150442

interIAMB (MI) 0.46153846 0.96 0.90265487



Results – 2.



Results – 3. 



Summary
 General BN representation is feasible and gives 

superior performance for PGAS
 Bayesian statistics allows the quantification of 

applicability of BNs
 Special extensions are necessary for

 Multiple targets
 Combined discovery of relevance and interactions (MBM, 

MBS, MBG) 
 Scalable multivariate analysis (k-MBS concept)  
 Feature aggregation
Antal et al.: A Bayesian View of Challenges in Feature Selection: 

Multilevel Analysis, Feature Aggregation, Multiple Targets, 
Redundancy and Interaction, JMLR Workshop and Conference 
Proceedings



Future work

 Specific local models (GA –specific local models)
 Integrated missing data management and GA 

analysis (cf. imputation)
 Noisy genotyping  probabilistic data (see poster)

 Integrated haplotype reconstruction (see poster)

 Integrated study design and analysis (see poster)
 Scaling computation up to ~1000 variables
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