

Constraint Programming for Itemset Mining

Tias Guns, K.U.Leuven, Belgium

In collaboration with Siegfried Nijssen and Luc De Raedt

Based on papers at KDD08 and KDD09

Position in summer school

Itemset Mining (Bart Goethals' talk)

- Apriori (Level-wise search, anti-monotonicity)
- Eclat (Specific depth-first search)

Constraint Programming

- Combinatorial Satisfaction Problems (CSP)
- Generic depth-first search

Constraint Programming for Itemset Mining

I. Motivation, constraint-based mining

- **II.** Constraint Programming basics
- III. Constraint-based itemset mining using CP
- IV. Correlated itemset mining using CP
- V. Conclusions.

(frequent) Itemset mining

Transactions:

Goal: find patterns in transactional data

- better understanding of data
- find novel information

Solution: Itemset Mining

Applications:

- online shops
- weblog analysis
- microarray analysis (gene expression)
- learning taxonomies
- text analysis (privacy leaks)

X

(frequent) Itemset mining

Transactions:

Too many patterns

- Time-consuming to interpret
- Long algorithmic runtime

Goal: find patterns in transactional data

Solution: Itemset Mining

Problem: too many patterns

Solution: Constraint-based Itemset Mining

select only interesting patterns, based on domain knowledge

Constraint-based mining

Use of constraints in data mining to specify the desired set of solutions (Mannila & Toivonen, 97)

$$Th(\mathcal{L}, Q, \mathcal{D}) = \{p \in \mathcal{L} | Q(p, \mathcal{D}) = true\}$$

Constraint-based Itemset Mining

condensed representations

- Maximal patterns: remove all redundancy
- Closed patterns: remove redundancy, keep frequencies
- delta-closed patterns: closed + fault tolerance
- user defined constraints
 - human readable \rightarrow size(*itemset*) \leq 5
 - high value \rightarrow total_cost(*itemset*) \geq 100 £
 - infrequent on other dataset \rightarrow freq_part2(*itemset*) $\leq 1\%$

Constraint-based Itemset Mining (cont.)

- + many constraints proposed
- new constraint often require new implementations
- combining constraints ?

state-of-the-art =

hard-coded support for some popular constraint families.

=> No principled approach

if (anti-monotone)
then:
if (monotone)
then:
if (convertible)
then:
if (convertible-anti-monotone)
then:
if (convertible-monotone)
then:
if (weak-anti-monotone)
then:

The need for a principled approach

The Data Mining process model:

Constraint Programming for Itemset Mining

I. Motivation, constraint-based mining
II. Constraint Programming basics
III. Constraint-based itemset mining using CP
IV. Correlated itemset mining using CP
V. Conclusions.

Constraint programming:

- ... solves combinatorial satisfaction problems
- ... is used in many *applications*
- ... is an active research area
- ... is among the most *efficient* general problem solving techniques

How CP works

Constraint Programming =

MODEL (by user) + SEARCH (by solver)

A CP model

all_

all_

variables

 $[\mathsf{E}_{_{1\!\!1}}\ldots\mathsf{E}_{_{\!\!\mathfrak{B}}}]$

- domains
 - E_{xy} = {1 ... 9}
- constraints all_different($[E_{1x}]$), ... all_different($[E_{x1}]$), ... all_different($[E_{11}...E_{33}]$), ...

	all_diff(all_diff(a	ll_dif	ff
diff(2	3					5	
diff(8	2		7	9	3
	÷	6	4			9	8		
	E_{41}	E ₄₂		2		7		4	
	E ₄₃	*•.	9		8		1		
	Ξ	4	2						
		8						3	
				6			2		1
	4					1		8	

The CP Search

Two key principles:

- Propagation of constraints
 eg. alldiff(X,Y,Z) X={1},Y={1,2},Z={1,2,3,4} → Y={2},Z={3,4}
 Every constraint is implemented by a propagator.
- Branch over values of variables
 - eg. Propagation at fixpoint \rightarrow branch over Z={3}

Search is recursive and complete

A CP search

all rows: all_different(row) all columns: all_different(col) all squares: all_different(square)

CP: Branch & Propagate

- propagate 2 (row)
- branch 4
- propagate 6 (square)

2			6	5	4
		2	7	9	3
			8	1	2
			1		
					1

Constraint Programming for Itemset Mining

- I. Motivation, pattern mining
- II. Constraint Programming basics
- **III.** Constraint-based itemset mining using CP
- IV. Correlated itemset mining using CP
- V. More pattern mining at work
- VI. Conclusion.

Constraint Programming

Surprisingly, Constraint Programming had not been used for constraint-based mining yet...

<u>Constraint Programming for Itemset Mining</u> in short: (KDD2008)

- using out-of-the-box CP solvers
- allows to express many IM constraints
- easily combine all those constraints

Itemset mining

Transactions:

 \bigcap

()

 \cap

 \bigcap

1

1

1

 \bigcap

()

 \cap

 \cap

()

 \cap

 \cap

CP 4 IM

- variables
 - $[I_1 \dots I_n], [T_1 \dots T_m]$
- domains
 - $I_x, T_y = \{0, 1\}$
- constraints

frequency:
$$\sum_{t \in I} T_t \ge$$

CP 4 IM

Carlon Carlo variables 0 0 1 $[I_1 \dots I_n], [T_1 \dots T_m]$ ວ, 6) domains $I_{x}, T_{v} = \{0, 1\}$ 1 1 constraints frequency: $\sum_{t \in \mathcal{T}} T_t \ge \theta$. *OR* freq. reified: $\forall i \in \mathcal{I} : I_i = 1$ $\rightarrow \sum T_t \mathcal{D}_{ti} \geq \theta.$ $t \in T$

CP 4 IM

 $\forall t \in \mathcal{T} : T_t = 1 \quad \leftrightarrow \sum I_i (1 - \mathcal{D}_{ti}) = 0.$

- variables
 - $[I_1 \dots I_n], [T_1 \dots T_m]$
- domains
 - $I_x, T_y = \{0, 1\}$
- constraints
 - frequency: $\sum_{t \in \mathcal{T}} T_t \ge \theta.$ OR freq. reified: $\forall i \in \mathcal{I} : I_i = 1 \rightarrow \underbrace{\sum_{t \in \mathcal{T}} T_t \mathcal{D}_{ti} \ge \theta}_{t \in \mathcal{T}}.$
 - + coverage:

$$\geq \theta.$$

Itemset Mining in CP (FIMCP)

Algorithm 1 Fim_cp's frequent itemset mining model, in Essence'

- 1: given NrT, NrI : int
- 2: given TDB : matrix indexed by [int(1..NrT),int(1..NrI)] of int
- 3: given Freq : int
- 4: find *Items* : matrix indexed by [int(1..NrI)] of bool
- 5: find Trans : matrix indexed by [int(1..NrT)] of bool

6: such that

coverage:
$$\forall t \in \mathcal{T} : T_t = 1 \quad \leftrightarrow \quad \sum_{i \in \mathcal{I}} I_i (1 - \mathcal{D}_{ti}) = 0.$$

freq >= 2: $\forall i \in \mathcal{I} : I_i = 1 \quad \rightarrow \quad \sum_{t \in \mathcal{T}} T_t \mathcal{D}_{ti} \ge \theta.$

CP: Branch & Propagate

propagate i2 (freq)

Intuition: infrequent

i2 can never be part of freq. superset

$\boldsymbol{\wedge}$							
	i1	i2	i3	i4			
	0/1	0/1	0/1	0/1			
1 0/1	1	0	1	1			
2 0/1	1	1	0	1			
3 0/1	0	0	1	1			

coverage:
$$\forall t \in \mathcal{T} : T_t = 1 \quad \leftrightarrow \quad \sum_{i \in \mathcal{I}} I_i (1 - \mathcal{D}_{ti}) = 0.$$

freq >= 2: $\forall i \in \mathcal{I} : I_i = 1 \quad \rightarrow \quad \sum_{t \in \mathcal{T}} T_t \mathcal{D}_{ti} \ge \theta.$

CP: Branch & Propagate

- propagate i2 (freq)
- propagate t1 (coverage)
 Intuition: unavoidable

t1 will always be covered

	i1	i2	i3	i4	
	0/1	0	0/1	0/1	
t1 0/1	1	0	1	1	Þ
t2 0/1	1	1	0	1	
t3 0/1	0	0	1	1	

coverage:
$$\forall t \in \mathcal{T} : T_t = 1 \iff \sum_{i \in \mathcal{I}} I_i (1 - \mathcal{D}_{ti}) = 0.$$

freq >= 2: $\forall i \in \mathcal{I} : I_i = 1 \implies \sum_{t \in \mathcal{T}} T_t \mathcal{D}_{ti} \ge \theta.$

CP: Branch & Propagate

- propagate i2 (freq)
- propagate t1 (coverage)

	i1	i2	i3	i4
	0/1	0	0/1	0/1
t1 1	1	0	1	1
t2 0/1	1	1	0	1
t3 0/1	0	0	1	1

coverage:
$$\forall t \in \mathcal{T} : T_t = 1 \quad \leftrightarrow \quad \sum_{i \in \mathcal{I}} I_i (1 - \mathcal{D}_{ti}) = 0.$$

freq >= 2: $\forall i \in \mathcal{I} : I_i = 1 \quad \rightarrow \quad \sum_{t \in \mathcal{T}} T_t \mathcal{D}_{ti} \ge \theta.$

CP: Branch & Propagate

- propagate i2 (freq)
- propagate t1 (coverage)
- branch i1=1
- propagate t3 (coverage)

Intuition: obsolete

t3 is missing an item of the itemset

coverage:
$$\forall t \in \mathcal{T} : T_t = 1 \quad \leftrightarrow \quad \sum_{i \in \mathcal{I}} I_i (1 - \mathcal{D}_{ti}) = 0.$$

freq >= 2: $\forall i \in \mathcal{I} : I_i = 1 \quad \rightarrow \quad \sum_{t \in \mathcal{T}} T_t \mathcal{D}_{ti} \ge \theta.$

CP: Branch & Propagate

- propagate i2 (freq)
- propagate t1 (coverage)
- branch i1=1
- propagate t3 (coverage)
- propagate i3 (freq)

Intuition: infrequent

i3 can never be part of freq. superset

coverage:
$$\forall t \in \mathcal{T} : T_t = 1 \quad \leftrightarrow \quad \sum_{i \in \mathcal{I}} I_i (1 - \mathcal{D}_{ti}) = 0.$$

freq >= 2: $\forall i \in \mathcal{I} : I_i = 1 \quad \rightarrow \quad \sum_{t \in \mathcal{T}} T_t \mathcal{D}_{ti} \ge \theta.$

CP: Branch & Propagate

propagate i2 (freq)

propagate i3 (freq)

- propagate t1 (coverage)
- branch i1=1

propagate t2 (coverage)

- propagate t3 (coverage)

coverage:
$$\forall t \in \mathcal{T} : T_t = 1 \quad \leftrightarrow \quad \sum_{i \in \mathcal{I}} I_i (1 - \mathcal{D}_{ti}) = 0.$$

freq >= 2: $\forall i \in \mathcal{I} : I_i = 1 \quad \rightarrow \quad \sum_{t \in \mathcal{T}} T_t \mathcal{D}_{ti} \ge \theta.$

CP: Branch & Propagate

- propagate i2 (freq)
- propagate t1 (coverage)
- branch i1=1
- propagate t3 (coverage)

- propagate i3 (freq)
- propagate t2 (coverage)

FIM_CP model: expressive

- Base model (Frequent Itemset Mining) $T_t = 1 \Leftrightarrow \sum_i I_i (1 - D_{ti}) = 0$ $I_i = 1 \Rightarrow \sum_t T_t D_{ti} \ge Freq$
- Maximal Frequent Itemset Mining $T_t = 1 \Leftrightarrow \sum_i I_i (1 - D_{ti}) = 0$ $I_i = 1 \Leftrightarrow \sum_t T_t D_{ti} \ge Freq$
- Closed Itemset Mining $T_t = 1 \Leftrightarrow \sum_i I_i (1 - D_{ti}) = 0$ $I_i = 1 \Rightarrow \sum_t T_t D_{ti} \ge Freq$ $I_i = 1 \Leftrightarrow \sum_t T_t (1 - D_{ti}) = 0$
- δ -Closed Itemset Mining $T_t = 1 \Leftrightarrow \sum_i I_i (1 - D_{ti}) = 0$ $I_i = 1 \Rightarrow \sum_t T_t D_{ti} \ge Freq$ $I_i = 1 \Leftrightarrow \sum_t T_t (1 - \delta - D_{ti}) = 0$

FIM_CP model: general

			~	<	6 6
	I	Ś	6	. Set	C.Der
	A	,×.Ś	1. 2	N 5	Par.
	\$ ⁰ ,	Pr.	\$P	$\mathcal{O}_{\mathcalO}_{\mathcal$	Sr.
Constraints on data					
Minimum frequency	Χ	X	Х	Х	Х
Maximum frequency				X	Х
Emerging patterns					Х
Condensed Representations					
Maximal	Х	Х		Х	Х
Closed	Х	Х			Х
δ -Closed					Х
Constraints on syntax					
Max/Min total cost			Х	X	Х
Minimum average cost			х		Х
Max/Min size	Χ	х	х	х	Х

Table 1: Comparison of Itemset Miners

=> most general system to date !

FIM_CP model: flexible

combining constraints is the core of CP

=> most flexible system to date !

In Short: FIM_CP

Principled approach

Using generic Constraint Programming

• Declarative language, very expressive

Runtime behavior, unconstrained

Dataset properties:

	german-credit	mushroom	letter
# items	77	116	74
# transactions	1000	8124	20000
sparseness	0.28	0.17	0.33

Runtime behavior, constrained

Dataset: segment 61x2310 (sparseness: 0.51)

patterns with min. freq. of 10% only: > 64 million Impossible to mine unconstrained with lower freq. treshold.

Experiment conclusions

bad for

- very large datasets (> 1.000.000 transactions)
- very low frequency unconstraint (< 0.1 %)

ideal for

- studying existing constraints
- rapid prototyping of new constraints
- exploratory constraint-based mining

Constraint Programming for Itemset Mining

- I. Motivation, pattern mining
- II. Constraint Programming basics
- III. Constraint-based itemset mining using CP
- **IV. Correlated itemset mining using CP**
- V. Conclusions.

Correlated Itemset Mining

Constraint-based mining

Frequent itemset mining (association rule mining)

• Traditional pattern mining: $Th(\mathcal{L}, Q, \mathcal{D}) = \{p \in \mathcal{L} | Q(p, \mathcal{D}) = true\}$

Correlated itemset mining (correlation rule mining)

• Correlated pattern mining with function $\phi(p, \mathcal{D})$, (χ^2) , $Th(\mathcal{L}, Q, \mathcal{D}) = \arg_{p \in \mathcal{L}} \max_k \phi(p, \mathcal{D})$

Correlated itemset mining

Also known as:

- Discriminative itemset mining
- Contrast set mining
- Emerging itemsets
- Subgroup discovery
- Interesting itemsets

They all find an itemset/rule in labeled data that optimises a convex (correlation) measure.

ROC analysis: **PN-space**

Measuring correlation

Many correlation functions (chi2, fisher, inf. gain) are convex and zero on the diagonal

Convex measures in CP

Frequent itemset mining:

Coverage: $\forall t \in \mathcal{T} : T_t = 1 \quad \leftrightarrow \quad \sum_{i \in \mathcal{I}} I_i (1 - \mathcal{D}_{ti}) = 0.$ frequency: $\forall i \in \mathcal{I} : I_i = 1 \quad \rightarrow \quad \sum_{t \in \mathcal{T}} T_t \mathcal{D}_{ti} \geq \theta.$

Correlated itemset mining:

coverage: $\forall t \in \mathcal{T} : T_t = 1 \quad \leftrightarrow \quad \sum_{i \in \mathcal{I}} I_i (1 - \mathcal{D}_{ti}) = 0.$ **correlation:** $\forall i \in \mathcal{I} : I_i = 1 \quad \rightarrow \quad f(\sum_{t \in \mathcal{T}^+} T_t \mathcal{D}_{ti}, \sum_{t \in \mathcal{T}^-} T_t \mathcal{D}_{ti}) \geq \theta$

+ branch and bound search

Bound in PN-space

Morishita & Sese, 2000

General to specific search

Adding an item will give equal or lower p and n

Improved bound in PN-space

Key observation: unavoidable transactions

Better bound in PN-space

Key observation: unavoidable transactions

Branch and propagate CIMCP

coverage: correlation:

$$\forall t \in \mathcal{T} : T_t = 1 \quad \leftrightarrow \quad \sum_{i \in \mathcal{I}} I_i (1 - \mathcal{D}_{ti}) = 0.$$

$$\forall i \in \mathcal{I} : I_i = 1 \quad \rightarrow \quad f(\sum_{t \in \mathcal{T}^+} T_t \mathcal{D}_{ti}, \sum_{t \in \mathcal{T}^-} T_t \mathcal{D}_{ti}) \ge \theta$$

iterative pruning loop:

Correlation measures

Taking the *unavoidable* transactions into account, results in more effective pruning...

<u>Correlated Itemset Mining in ROC space:</u> <u>A Constraint Programming Approach</u> in short: (KDD2009)

- based on principles of ROC analysis
- using insights from Constraint Programming
- very fast and effective pruning

Branch and bound search for top-1 pattern

- In CP:
 - 1-support (traditional minimum support)
 - 2-support (Morishita & Sese, 2000)
 - 4-support (with unavoidable transactions)

Experiments in CP

Runtime in seconds, >900s indicated by >

Name	Density	4-supp.	2-supp.	1-supp.
anneal	0.45	0.22	24.09	72.71
australian-credit	0.41	0.30	0.63	17.52
breast-wisconsin	0.5	0.28	13.66	228.08
diabetes	0.5	2.45	128.04	>
german-credit	0.34	2.39	66.79	>
heart-cleveland	0.47	0.19	2.15	29.58
hypothyroid	0.49	0.71	10.91	>
ionosphere	0.5	1.44	>	>
kr-vs-kp	0.49	0.92	46.20	713.35
letter	0.5	52.66	>	>
mushroom	0.18	14.11	13.48	27.31
pendigits	0.5	3.68	>	>
primary-tumor	0.48	0.03	0.13	0.85
segment	0.5	1.45	>	>
soybean	0.32	0.05	0.07	0.38
splice-1	0.21	30.41	31.11	35.02
vehicle	0.5	0.85	>	>
yeast	0.49	5.67	781.63	>

Outside CP:

- DDPMine [ICDE'08]
- LCM (FIMI's "winner")
- CIMCP (4-bound in Gecode CP solver)
- corrmine (4-bound pruning implemented in a eclat-like specialised miner)

Experiments in CP

Runtime in seconds, >900s indicated by > memory exhausted by -

Name	$\operatorname{corrmine}$	cimcp	ddpmine	lcm
anneal	0.02	0.22	22.46	7.92
australian-credit	0.01	0.30	3.40	1.22
breast-wisconsin	0.03	0.28	96.75	27.49
diabetes	0.36	2.45	_	697.12
german-credit	0.07	2.39	_	30.84
heart-cleveland	0.03	0.19	9.49	2.87
hypothyroid	0.02	0.71	_	>
ionosphere	0.24	1.44	_	>
kr-vs-kp	0.02	0.92	125.60	25.62
letter	0.65	52.66	_	>
mushroom	0.03	14.11	0.09	0.03
pendigits	0.18	3.68	_	>
primary-tumor	0.01	0.03	0.26	0.08
$\operatorname{segment}$	0.06	1.45	_	>
soybean	0.01	0.05	0.05	0.02
splice-1	0.05	30.41	1.86	0.02
vehicle	0.07	0.85	_	>
yeast	0.80	5.67	_	185.28
avg. when found:	0.15	6.55	28.88+	81.54 +

Experiment conclusion

New bound results in far better pruning

CP (gecode) incurs overhead for very sparse datasets

 Principles from CP-mining carry back over to traditional mining algorithms

• Fastest algorithm in all our experiments

Parameter-free mining ?

Can we do even better ?

- Mine all possible itemsets for which a correlation measure exists under which it is optimal ?
 - = All itemset on the convex hull in ROC space

Experiments convex hull

	cimcp	cimcp convex hull		
Name	time (s)	time (s)	size of hull	
anneal	0.22	0.44	17	
australian-credit	0.30	1.33	22	
breast-wisconsin	0.28	0.83	20	
diabetes	2.45	11.9	30	
german-credit	2.39	3.93	21	
heart-cleveland	0.19	0.37	20	
hypothyroid	0.71	3.01	19	
ionosphere	1.44	8.69	15	
kr-vs-kp	0.92	1.75	17	
letter	52.66	405.14	34	
mushroom	14.11	32.45	10	
pendigits	3.68	45.79	19	
primary-tumor	0.03	0.07	16	
segment	1.45	8.96	6	
soybean	0.05	0.09	9	
splice-1	30.41	40.13	10	
vehicle	0.85	4.12	22	
yeast	5.67	25.51	28	
average:	6.55	33.03	18.61	

- No parameters
- All patterns on convex hull
- Possible !

- Reasonably small hulls
- Reasonable increase in runtime for entire hull

Constraint Programming for Itemset Mining

- I. Motivation, pattern mining
- II. Constraint Programming basics
- III. Constraint-based itemset mining using CP
- IV. Correlated itemset mining using CP
- V. Conclusions.

Unrelated work

Boosting / sparsity induced learning

- Every correlated itemset is a rule; a weak classifier
- LPboost [iboost: H. Saigo, T. Uno, K. Tsuda, 2007]

Statistical validation of itemsets

- Geoffrey I. Webb: Discovering significant patterns. Machine Learning Journal (2008)
- Arianna Gallo, Tijl De Bie, Nello Cristianini: MINI: Mining Informative Non-redundant Itemsets. PKDD 2007
- Sami Hanhijärvi, Markus Ojala, Niko Vuokko, Kai Puolamäki, Nikolaj Tatti, Heikki Mannila: Tell me something I don't know: randomization strategies for iterative data mining. KDD 2009

Constraint Programming CP (IM) for Itemset Mining

A new methodology for constraint-based mining

- Pattern Mining as model + search
- Using a declarative CP language
- Itemset Mining as standard depth-first search

Yet keeping the existing principles.

- Anti-monotonicity
- Similar traversal as specialized miners like eclat, dual miner, mafia, examiner, ...

Constraint Programming CP (IM) for Itemset Mining

Many additional advantages:

- Easily combining constraints
 - Demonstrated: Emerging + delta-closed + max-size + min-size
- Studying constraints independently
 - Demonstrated: Correlation constraint; 1-bound, 2-bound and 4-bound
- Rapid prototyping of new constraints
 - Demonstrated: Entire ROC convex hull

Constraint Programming CP (IM) for Itemset Mining

Based on open-source Gecode library for CP

- C++, very efficient, well documented
- Generic and extensible

Constraint Programming for Itemset Mining

- Also open-source and extensible
- Many constraints and documentation
- \rightarrow http://www.cs.kuleuven.be/~DTAI/CP4IM \leftarrow

Challenges

CP (gecode) has overhead for sparse data

Specialised solver with same flexibility ?

Building global models (eg. boosting)

Incorporate more of the learning in the mining ?

In Data Mining, different pattern types and data

graphs, trees, sequences with CP ?

Bigger picture

questions?

http:// www.cs.kuleuven.be/ ~dtai/CP4IM/

 Dataset properties:
 total transactions / items: 137 / 24
 density: 51%
 average trans. size: 12

 Patterns at 10% (=2) frequency:
 78 211 standard
 6 200 closed
 412 maximal

 Download dataset: hepatitis.txt
 Download dataset: hepatitis.txt
 Download dataset: hepatitis.txt