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Why Pattern
Discovery ?

@ Increase of data storage capacity,

@ increase of computational power,

@ inter-disciplinary techniques,

@ objective : to understand the underlying process
generating the dataset.



Availability of huge datasets
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"
caalanes @ Supermarket transactions,
@ credit card records,

@ telephone call details,

@ weblogs, ISP logs,

@ genetic databases.

What is a pattern ?
Pattern matching : a collection of similar values

Pattern discovery : a particuliar combination of values




Introduction to
Pattern
Discovery
(5/59)

Cagliari'09

Pattern Matching vs
Pattern Discovery

Pattern Matching vs Pattern Discovery

i

Pattern Matching

@ a dataset,
@ a pattern,
@ a metric and a distanc

/{Ref. Pattern

lInstance 1

~~instonce 2

—~|Instance 3

~instance &

e.
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Pattern Matching vs
Pattern Discovery

Pattern Discovery
@ a dataset,
@ a metric and a distance

@ "a pattern space”
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The pattern :
Finding (subsets) events that occur together [Agrawal93].

Association [4 Rakesh Agrawal and Ramakrishnan Srikant.

Patterns Fast Algorithms for Mining Association Rules in Large
Databases,

Proceedings of 20th International Conference on Very
Large Data Bases, 1994.
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Cagliari'09 Typical application (origin) :

Market basket analysis :
@ "10% of customers are buying wine and cheese",
@ "15% are buying crisps and beer",

posocation and the legendary? :

Patterns
@ "People buying beer on saturday are very likely to buy
nappies" (Wal-Mart).

@Beer and Nappies — A Data Mining Urban Legend
http://web.onetel.net.uk/~hibou/Beer and Nappies.htm/
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amazoncouk
Click 1o LOOK INSIDE! An Introduction to Support Vector Machines and e
= Other Kernel-hased Learning Methods e (301

(Harscoven |

C

by Nello Cristianini (Author), John Shawe-Taylor (Author) or
Yrinink (L customer review) Sign in to tum on 1-Cikck ordening.

RRP: £41.60 B —
price: £38.95 & this item Delivered FREE in the UK with Super s s
Saver Delivery. See details and conditions 31 used & new from £29.52
You Save: £2.05 (5%) o e
. Have one to sel? [ Sell yours h
Association In stock. —
Patterns Dispatched from and sold by Amazon.co.uk. Gift-wrap available. ‘.m‘
‘Want guaranteed delivery by Tuesday, August 257 Order it in the next 3 hours and 55 | Addto Wadding List |

minutes, and choose EXpress delvery at checkout. See Details
Share your own customer images

25 new from £32.80 6 used from £29.52
Search inside this book - —

| Frequently Bought Together ,

Price For All Three: £141.54

(. Add all three to Basket

Show availabilty and shipping details

& This item: An Introduction to Support Vector Machines and Other Kemel-based Leamning Methods by Nello Cristianini
¥ Kemnel Methods for Pattern Analysis by John Shawe-Taylor

& Pattem and Machine Leaming Science and Science and by
ci M. Bishop
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Cagliari 09 Other typical applications :

@ Financial-services/telecommunications companies : to
which combination of services customers most often
subscribe,

Association @ "Quality-assurance : which combinations of

Patterns

components are most likely to fail at the same time,
@ Web log analysis,
@ Finding Association Rules,
@ Classification, ...
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The input data

@ 7 ={iy,lo,...,In}, setof items,

@ itemset S : any subset? of Z,

@ transaction : t = (tid, S;g), tid € Nand S;jqg C 7
@ 7 ={Hf,t,...,tn}, set of transactions,

Cagliari’'09

@Usually excluding the empty set

v

Common itemsets

tnt = SN S with t = (tid, S) and ¢ = (tid, S')
common(t, ') = 210"\ (
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e Example (Transactions and itemsets)

Cagliari09 basket | Py | Po | P3| P4 | Ps i
t i]o[o0o|0]o0 {P1}
ty 111 |1 [ 1] 0 |{PPsPsPs}
ts 110|1]0]1 {P1,Ps, Ps}
ts o/0|1 /01O {Ps}
ts 01| 1| 1] 0] {PsPsPs}
5 1{1]1]0]0/| {PPsPs}
t; 110 |1 | 1] 0] {PyPsPs}
s o1 1|01 {P>, P3,Ps}
to 110]0|1]0 {Py, Py}
Lo 0 1 1 0 1 {P27P37P5}

common(ty, t3) = {{P1},{Ps},{P1, Ps}, |
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@ Find the most frequent itemsets that occur amongst all
the transactions of 7.

@ The pattern space is 2%

Cagliari’'09

v

Complexity

@ Size of the space of patterns : 27!

example #items sold 27l
Small shops 5000 1,4 % 107905
ebay.com 30.147.410 | 5% 109075274
amazon(+third) | +5.000.000 | 9,5 x 107°05149
ebay.com(cat) 20.000 4 % 106020
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Definition (Support Count of an itemset)

() The Support count (or simply count) of an itemset is the
Cagliari09 number of transactions where it occurs.
Count(S) = |{< tid, Sig >| S C Siig}|

Definition (Support of an itemset)

The Support of an itemset is the proportion of transactions
where it occurs. Support(S) = Count(S)/n

Definition (Minimal support)
minsup is the minimal support of itemset to be considered.

Definition (Supported itemsets)
S is a supported itemset iff Support(S) >= minsup.
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Example (Supported itemsets)
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basket Py Py P3 Py Ps ltig

4 1 0 | 0 |00 2y

t 1 1 1 1 0 | {P1,P>, P3, P4}
s 1t o | 1] o |1 {Py, Py, Ps}
s ol o1 |o] o {P3}

15 0 1 1 1 0 {P>, P3, Py}
Is 1 1 1 0 0 {Pi, P>, P3}
t7 1 0 1 1 0 {Pi,P3, P4}
ig 0 1 1 0 1 {P>,P3,Ps}

Frequent sets fy 1 0 0 1 0 {P1,Ps}

to 0 1 1 0 1 {P>, P3,Ps}

Support({P1, P3}) = [{t, t3, ts, t7}[/10 = 0.4
Support({Pz, P4}) = |{t>,t5}|/10 = 0.2
with minsup = 0.25, { Py, Ps} is supported, { P>, P4} is not.
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Theorem (Downward closure property /Support

monotonicity.)
S C §' = Support(S) >= Support(S')

By corollary, if Lk is the set of supported sets with cardinality

K :
Ly=0=Vi>k, L =10 I
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The Apriori algorithm

Ly «+ supported itemsets of cardinality one
k2

while (Lx_1 = 0) {
Cx < create_candidates(Lx_1)
Ly — prune(Ck)
k—k+1

}

return Ly U Lo U ... Lg
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The Apriori algorithm
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Cagliari'09 .
Join Step

Compare each member of L, 1, say A, with every other
member, say B, in turn. If the first kK — 2 items in A and B
(i.e. all but the rightmost elements of the two itemsets) are
identical, place set AU B into Cg.
Prune Step
For each member ¢ of C in turn {

Examine all subsets of ¢ with kK — 1 elements

Delete c from Cy if any of the subsets is not a member of
Ly_1
}
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Example (Joint step for Cs)

: Ly = {{p7 q,r, S}a {pv q.r, t}7 {pa q.r, Z}, {pv q,s, Z}v
Caglaliee {p,r,s,z},{q,r,s,z},{r,s,w,x},{r,s,w,z},{r,t,v,x},
{r,t,v,z} {r.t,x,z},{r,v,x,y},{r,v,x,z},{r,v,y,z},
{r.x,y,z},{t,v,x,z},{v,x,y,z}}

[ b Contribution to C§

{p.q.,r,s} | {p.q,r t} {p,q,r, st}
{p.q.r,st | {p,q.r,z} {p.q,r,s,z}
{p.q,r.t} | {p,q.r,z} {p.q,r.t, 2}
{r,s,w,x} | {r,s,w,z} {r,s,w,x,z}
{r,t,v,x} | {r,t,v,z} {r,t,v,x,z}
{r,v,x,y} | {r,v,x,z} {r,v,x,y,z}

— Cs={{p,q,r,s,t},{p,q,r,s,z},{p,q,r,t,z}, {r,s,w,x, z},
{r7 t? V’ X? Z}’ {r7 V? X’y? z}}
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Example (Pruning step for Cs)

&) L4 = {{p7 q,r, S}’ {p7 q,r, t}7 {p’ q,r, 2}7 {p’ q,s, Z},
Cagliari09 {p,r,s,z},{q,r,s,z},{r,s,w,x},{r,s,w,z},{r, t, v, x},

{r7 t? V’ Z}’ {r7 t) X? Z}) {rﬂ V? X? y}7 {r7 V’ X’ Z}’ {r7 V? .y? z}?
{r7x’y’z}7{t7 V?X’Z}?{V7X7y’z}}
CEIS = {{p’ q,r,s, t}? {p7 q.r,s, Z}a {pv q.r, taz}v {I’, S, W,X,Z},
{r,t,v,x,z},{r,v,x,y,2z}}

Itemset in C; | Subsets all in L4 ?
{p’quvsat} NO:{paquat}¢L4
{p,q,r,s,z} | Yes

{p,q,f,t,Z} NO:{paQ7taz}¢L4
{r,s,w,x,z} | No:{r,s,x,z} & L4
{r,t,v,x,z} | Yes

{r,v,x,y,z} | Yes

Cs={{p,q,r,s,z},{r,t,v,x,z},{r,v,x,y,z}}
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@ We would like to use the itemset found to express
association rules...

Association Rules
Mining



Association Rules Mining

Introduction

Introduction to
Pattern
Discovery
(23/59)

Definition (Rule)

Cagliari’'09

L — R with L (antecedant/condition) and R (consequence)
being predicates.

@ Reads L implies R,
@ ex :"If it rains then the ground will be wet."
@ {ab} — {cd} means {a,b} C S — {c,d} CS,VSeT

Definition (Association Rule)
L — R with L # () and R # () being disjoint itemsets.
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Cagliari09 @ Probabilistic AR : "When beer and crisps are bought
together, cheese is bought in 45% of cases”,

@ L - R:LURisanitemset:

Definition (Support of an Association Rule)
Support(L — R) = Support(LU R) = Count(LU R)/n

Definition (Confidence of an Association Rule)

Confidence(L — R) = Support(L U R)/Support(L) =
Count(LU R)/Count(L)
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@ Only supported rules : Support(L — R) > minsup,

@ given | LU R |= k, then number of rules that can be
generated :

Cagliari'09

Thlck =2k -2

@ Filtering rules : Confidence(L — R) > minconf

Definition (Confident Right-hand side)

The right-hand side of a rule is said confident iff
Confidence(L — R) > minconf and unconfident otherwise.
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Generating rules

Introduction to
Pattern
Discovery
(26/59)

Cagliari'09

Confidence(LU {x} — R) > Confidence

(L—> RU{X})

Any superset of an unconfident right-hand itemset is
unconfident.

Any (non-empty) subset of a confident right-hand itemset is
confident.

@ Rules can be generated with an Apriori-like algorithm.
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@ Temporal sequence data sets :
@ Supermaket customer transactions,
o Weblogs : user navigation,
o Alarm logs : fault analysis,

@ Text sequence data sets :
o Genomics,
, e documents,

Sequential

Patterns e etc.
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Finding sequential patterns in sequences of events :

Cagliari'09

@ Data set : supermaket customer transactions,

@ Pattern : customers renting "The Fellowship of the
Ring" rent "The Two Towers" and then "The Return of
the King"

[§ Rakesh Agrawal and Ramakrishnan Srikant.

Mining Sequential Patterns,
Proceedings of 5th International Conference on

Extending Database Technology, 1995.
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(29150) Definition (Sequence)

SN S = (Sy...Sp) where si is an itemset

Definition (Contained sequence)

A sequence (a; ... ap) is contained in a sequence
(by ...bm) if there exists integers iy < ip < --- < i such that
ay C by, ax C by, ... an C by,

’

@ ({3}{4,5}{8}) is contained in
{({7}{3,8}{9}{4,5,6}{8})
@ ({3}{5}) is not contained in ({3,5})




Sequences

Examples
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Discovery Customer Id  Transaction Time Items Bought
(B050) 1 June 25’93 30
Cagliari’'09 1 June 30 93 90
2 June 10’93 10, 20
2 June 1593 30
2 June 20 '93 40, 60, 70
3 June 25’93 30, 50, 70
4 June 25 '93 30
4 June 30 '93 40,70
4 July 25°93 90
5 June 1293 90
Secuonces Customer Id Customer Sequence
1 ({30}{90})
2 ({10,20}{30}{40,60,70})
3 ({30,50,70}{30}{40,70}{90})
> ({90})




Sequences
Sequence Support
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Cagliari09 Let 7; be the set of transactions of customer i,
Support(s) = |{i | s C T;}|

Definition (Maximal sequence)

In a set of sequences, a sequence is maximal if it is not
contained in any other sequence.

Pattern discovery task :

Find all maximal sequences (Sequential Patterns) in a set of
customer transactions having a support greater than
minseqsup.




Sequences

Sequence Support
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e — Customer Id Customer Sequence

1 ({30}{90})
2 ({10,20}{30}{40,60,70})
3 ({30,50,70}{30}{40,70}{90})
5 ({90})

Sequential Patterns (minseqsup = 0.25)

({30}{90})
({30}{40,70})

Sequences ({30}), ({40}), ({70}), ({90}), ({30}{40}),
({30}{70}), ({40,70}) are not maximal.
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(33/59) Algorithm Agrawal et al

SeE @ Sorting phase : (customer id, transaction time)

@ Customer-supported itemset phase : customer count
based Apriori

@ Transformation phase : transforms the customer
transaction to accelerate the containing tests

@ Sequence phase : find supported sequences from
(customer)supported itemsets (AprioriAll,
AprioriSome/DynamicSome)

@ Maximal phase : keep only the maximal supported
sequences.
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Cagliari'09

Finding episodes in sequences of events :

@ Data set : set of timed events,
@ Pattern : groups of events occuring frequently close to
each other

[3 Heikki Mannila, Hannu Toivonen and A. Inkeri Verkamo,
Discovery of Frequent Episodes in Event Sequences,
Data Mining and Knowledge Discovery, 1997.
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Definition (event)

Let E be a set of event types, an event is a pair (A, t) where
A € E and t is an integer (timestamp).

EDF A BCEF C D BAD C EFC BEAECF A D

e ——

30 35 40 45 50 55 60 65

— ((E,31),(D,32), (F,33),(A 35),(B,37),...,(D,67))
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Episodes
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Pattern EDF A BCEF C D BAD C
Discovery ——t —+
(36/59) | i
30 35 40 45 50 55 60 65

EFC BEAECF A D

Cagliari'09

s=((E.31),(D,32),(F,33),(A,35),(B,37),...,(D,67))

Definition (episode)
An episode is a partially ordered subset of events.

@
OmOnOEN0)
o) ©

@ © (2)
(@
e=(V,<.9),9:V—E
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Cagliari'09

An episode e = (V',<', ¢') is a subepisode of e = (V, <, g)
if V.c V,vve V. dg(v)=g(v),and
vvwweV v<w—-v<w

@ &
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Mining episodes
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................................

Cagliari’'09

Pattern discovery task
Given
@ a window size,

@ a minimal frequency,
@ aclass of episodes,
find all the frequent episodes in the class.

Sequences

Note : frequency of an episode = amount of windows in
which it occurs.
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Algorithm (Mannila et al)
Cy —{{e} | ec E}
k1
while (Cx = 0) {
Ly < frequent(Cyg, s, minfr, winsize)
Ck11 < generate(Ly,C)
k—k+1
}

return Ly U Lo U ... Lg
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Discovering (rational) languages

Languages



Languages

What is Gramatical Inference ?
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@ A grammar describes a language/set of words (possibly
infinite).

@ Is it possible, from a finite sample (or a positive and
negative sample) to guess the grammar ?

@ Grammatical inference : find a description of the
generating process.

Languages
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Languages

Languages

Grammars and their hierarchy

Chomsky hierarchy :

Type—2 Type-1)Type-0

Type Grammar Language Machine
type-0 Unrestricted Recurs. enumer. | Turing machine
type-1 | Context-sensitive | Context-sensitive | Linear bounded
type-2 Context-free Context-free Pushdown aut.
type-3 Regular

Regular

Finite aut.
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Definitions : regular language
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Caglari09 Definition (Regular language)

Let X be a finite set of symbols (ex : £ = {a,b,c} ), a
regular language L C ¥* recursively defined by mean of
concatenations, unions and stars

Example (Regular language)
L=a-b*-c={ac,abc,abbc,abbbc, ...}

Theorem (Kleene)

Languages

Rat = Rec
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Definitions : finite state automaton

e Il Definition (Finite state automaton)

Discovery

(44/59) Let X be an alphabet, a finite automaton is a 5-tuple
Cagliari’'09 A — <Z, 07 /7 F, E> Where

Q is a finite set of states,
ICQ is the set of initial states,
FCQ is the set of final states,

EC QxX x Q@ isthe set of transitions.

Example (Finite state automaton)

Languages

a,b,c

4’
c3,d

4
d
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Definitions : finite state automaton
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Discovery Example (Finite state automaton)

Cagliari'09

Languages @ Path, accepted path
@ accepted word
@ Language L(.A) recognized by A



Languages

Maximal automaton of a sample

| ducti ST 0
" atern [ Definition (Maximal automaton)

Discovery

(46/59) Given a sample /., the maximal automaton recognizing /.
Cagliari’09 is the biggest automaton recognizing /...

Example (Maximal automaton)
I+ = {a, ab, bab} :

Languages
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Quotient of an automaton
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Cagliari09 For any set S, a partition 7 is defined by 7 = {s | s C S}
Vsems#0,
suchthat Vs,s’ e m,sns =10,

User = S

Definition (Quotient of an automaton)

A/m=(X, @, I' F' E") is aquotientof A= (¥, Q, I, F, E) iff

Q= Q/r

I= {BeQ|3geBstgel}

F= {BeQ@Q|3geBstqgecF}

E= {BaB)e@xXxQ|3dgeB,qgdeB,acyt
s.t.(q,a,q') € E}
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Quotient of an automaton : property
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Cagliari'09

Property

if A/ is the quotient of .4 w.r.t. relation 7, then
L(A) C L(A/7)

@ any derivation produces a generalisation,

@ the set of automata obtained by subsequent derivation
forms a lattice.

Languages
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Example : partition 74
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L(A) = a(aa)"b + ab(bb)"
™ = {{07 1}7 {2}7 {37 4}}
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Example : partition 7
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Cagliari'09

L(A) = a(aa)*b + ab(bb)*

T2 = {{07 1, 2}7 {3? 4}}

L(A/mp) = a*b(ba*b)*



Languages

Example : partition 73
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Cagliari'09

L(A) = a(aa)* b+ ab(bb)*
T3 = {{0}7 {1 ) 3}7 {27 4}}

L(A/m3) = (aa*a)*(a+ ab*)



Languages

Example partition 74
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Cagliari'09

L(A) = a(aa)*b + ab(bb)*
4 ={{0,1,3,2,4}}

a,b

L(A/m4) = (a+ b)*
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The mining task
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Cagliari'09 @ Find an automaton that generalizes, not too much, the

input sample : characterizable, heuristic methods ;

@ the space of possibilities is the number of partitions of
the set of states of the sample maximal automaton ;

@ the size of the exploration space is the number of
partitions of the maximal automaton coding the

sample : By = X)_, < Z ) B

Languages B5 = 52, ey B10 = 115975, Bgo ~ 5.1013, Bgo ~ 8.1023,
B50 ~ 2.1049 ..
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A characterizable method : the k — R/ algorithm
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Cagliari'09 Definition (k-deterministic automaton)

A is k-deterministic if, from any state, there is at most one
path for any given word of length > k.

Example (A 2-deterministic automaton)

Languages

Deterministic automaton are 0-deterministic.
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A characterizable method : the k — R/ algorithm
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Cagliari09 Definition (Reverse automaton)

The reverse automaton of A = (¥, Q, I, F, E) is defined by
AR =(£,Q,F,I,E") with E' = {(q,a,q) | (¢, a,q) € E}.

Example (Reverse automaton)

Languages
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A characterizable method : the k — R/ algorithm
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Cagliari'09

Definition (k-reversible automaton)

An automaton is k-reversible if it is deterministic and its
reverse automaton is k-deterministic.

Dana Angluin [Ang82] gave a characterization of reversible
languages and an inference algorithm : k — RI.

[§ Dana Angluin.
Inference of Reversible Languages,
Languages Journal of the ACM, Volume 29, 1982.
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A characterizable method : the k — R/ algorithm
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k < order of the model, I, < positive sample
A — PTA(l})
m— Q
while — k-reversible(.A/m){
(By, Bo) <—non-reversible(A/m, )
T 7\ {B1, B2} U{By U By}
}

return A/m

Languages
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Languages

Languages

A characterizable method : the k — R/ algorithm

Example (k — Rl run with /. = {ab, bb, aab, abb}, k = 1)

L(A/7) = b* + atbt = a*b*




Going further ...
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P Some references to go further ..
Cagliari'09

Principles of Data Mining, David J. Hand,
Heikki Mannila and Padhraic Smyth,
ISBN-13 : 978-0-262-08290-7

Principles of Data Mining, Undergraduate
'.32?;“.'3.'53,?5 Topic in Computer Science, Max Bramer,
ISBN-13 : 978-1-846-28765-7

Languages

WEKA : associations.apriori
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