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What this talk is about

• One of the most popular problems in computer 
science!

• [Agrawal, Imielinski, Swami, SIGMOD 1993]
13th most cited across all computer science
[Agrawal, Srikant, VLDB 1994]
15th most cited across all computer science

• [Goethals, 2003]
a nice survey

• several other very interesting papers



Pattern Mining
• Unsupervised learning
• Local (vs. global models)
• Useful for

- large datasets
- exploration: « what is this data like? »
- building global models

• Less suitable for
- well-studied and understood problem domains



Outline
• Mining association rules
• Algorithms

- Apriori
- Eclat
- FP-growth

• Optimizations and Extensions
• Other pattern types
• General levelwise search
• Other interestingness measures



Back in 1993 ...
• Find associations between products

• For example: a supermarket

- which products are frequently bought together?
- do some products influence the sales of other products?

e.g. “75% of people who buy beer, also buy chips”

Text



Applications
• Supermarket

- cross selling

- product placement
- special promotions

• Websearch
- which keywords often occur together in webpages?

• Health care
- frequent sets of symptoms for a disease

• Prediction
- associative classifiers

• ...



Applications
• Basically works for all data that can be represented 

as a set of examples/objects having certain 
properties
- patient / symptoms
- movies / ratings
- web pages / keywords
- basket / products
- …



Formally
• A transaction database is a collection of sets of 

items (transactions)
• An itemset is a set of items
• An association rule is an implication of the form 

X=>Y, with X and Y itemsets
• Support Count (SC) of an itemset X is the number 

of transactions that contain X
• Support of X (also frequency of X) = SC(X)/SC({})
• Support of an association rule X=>Y equals the 

support of X U Y
• Confidence of an association rule X=>Y 

= Support(X=>Y) / Support(X)



Problem
• Given: 

- a transaction database
- a minimum support threshold
- a minimum confidence threshold

• Find all rules X=>Y such that:
- Support(X=>Y) > minsup 
    (X=>Y is frequent)
- Confidence(X=>Y) > minconf 
    (X=>Y is confident)



• minimum support = 2
• minimum confidence = 2/3
• {shoes} ⇒ {socks} is a 

confident association rule with
support = 0.5, confidence = 1

• {socks} ⇒ {shoes} is not

• Sweater can not appear in a 
rule

Example

Tid Transaction

1 shoes, socks, 
T-shirt

2 socks, sweater, 
pants

3 T-shirt, pants, 
socks

4 shoes, socks



• Solution #1:  
- Generate all possible rules
- Count their supports and compute confidence
- INTRACTABLE... (3n possible combinations)

• Solution #2:
- First, find all frequent itemsets
- Second, split every frequent itemset Z in two parts X and 

Y, such that X ⇒Y is confident

•Example: I = {A,B,C}
test rules {A,B}⇒{C}, {AC}⇒{B}, {B,C}⇒{A}, 

{A}⇒{B,C}, {B}⇒{A,C}, {C}⇒{A,B}

How?



• Solution #1:
- Generate all possible itemsets
- Count their support in DB
- INTRACTABLE… (2n possible combinations)

How to find all frequent itemsets?



• Solution #2:
- Apriori
- Rakesh Agrawal and 

Srikant Ramakrishnan 
[VLDB, 1994]

- Heikki Mannila and 
Hannu Toivonen 
[KDD, 1994]

How to find all frequent itemsets?



Apriori

•Key observation: (monotonicity)

A subset of a frequent itemset 
must also be frequent, or,
 
any superset of an infrequent 
itemset must also be  infrequent!



Apriori

• An itemset is called a candidate itemset if all of 
its subsets are known to be frequent

• Solution:
Iteratively find frequent itemsets with cardinality 
from 1 to k (k-itemset)



Example
• Start with small itemsets, only proceed with larger 

itemset if all subsets are frequent
• { A,B,C } is evaluated after {A}, {B}, {C}, {A,B}, 

{A,C}, and {B,C}, and only if all these sets are 
known to be frequent



Level-wise search

{}

A B C DC1

AB BCAC AD CDBDC2

minsup = 2

Tid Items

1 A, C, D

2 B, C

3 A, B, C, D

ABCD

ACDC3ABC ABD BCD



The Apriori Algorithm
Ck: candidate itemset of size k
Lk: frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=∅; k++) do begin
 Ck+1 = candidates generated from Lk;
 for each transaction t in database do

 increment the count of all candidates in Ck+1

 that are contained in t
 Lk+1  = candidates in Ck+1 with min_support
 end
return ∪k Lk;



Candidate Generation

{1 3}
{2 3}
{2 5}

L2 {2 3 5}

{3 5} ???

• for all itemsets X, Y with X[:-1]=Y[:-1]
• X + Y[-1:] is a candidate itemset,
• only if all its subsets are known to be frequent
• note that {1,2,3} was not even considered



Example run
C1 L1

L2
C2 C2

C3 L3

Scan D

Scan D

Scan D



• In every count step we have to do a very 
costly scan over the complete database.

Apriori’s main problem



Optimizations
• Dynamic Itemset Counting [Brin et al., 1997]

- interrupt algorithm after every M transactions and 
already generate larger candidates if possible

• Partition [Savasere et al., 1995]
- partition database, and mine each part separately 
(using relative minsup!)
- Union of all frequent itemsets of all parts are a 
superset of all frequent itemsets in complete database!
- Extra pruning step

• Sampling [Toivonen, 1995]
- Run apriori on small sample of DB
- Correct result



• Until today, many researchers still try to find new 
techniques, and improve Apriori
- Optimized for sparse/dense data
- Optimized for many/few items

• Implementation issues are important
- How to implement the counting step
- How to read the database
- How to generate the candidates
- How to prune the candidates
- Ordering of items is important!

• For more info: visit http://fimi.cs.helsinki.fi/

Current Research

http://fimi.cs.helsinki.fi
http://fimi.cs.helsinki.fi


What if DB fits in memory?

• Faster counting of supports!

• Two new techniques differ in counting strategy 
and how the database is represented in memory 
- Eclat [Zaki et al., KDD 1997]
- FP-growth [Han et al., SIGMOD 2000]



Eclat: tidlist
• For every item, a list of transaction id’s is stored in 

which the item occurs, denoted by tidlist

• For every itemset, its tidlist equals the intersection 
of the tidlists of two of its subsets



Eclat: tidlist example

1 {a,b}

2 {a}

3 {a,b}

4 {a}

5 {a,b}

6 {b}

7 {b}

1 2 3 4 5{a} 

1 3 5 6 7{b} 

1 3 5{a,b} 



Eclat: algorithm
• In principle Apriori could be used together with 

intersection based support counting
• Memory usage, however, would blowup!
• Therefore, a depth-first approach is used



Divide and conquer
1. Find all itemsets containing {a}
2. Find all itemsets not containing {a}
• For 1. Only transactions containing {a} are 

necessary  ({a} can be removed)
=> {a}-conditional database

• For 2. {a} can be removed from all transactions
• Apply recursively



Eclat: algorithm
1. Get tidlist for each item (DB scan)
2. Tidlist of {a} is exactly the list of transactions 

containing {a}
3. Intersect tidlist of {a} with the tidlists of all other 

items, resulting in tidlists of {a,b}, {a,c}, {a,d}, …
= {a}-conditional database (if {a} removed)

4. Repeat from 1 on {a}-conditional database
5. Repeat for all other items



FP-growth
• Database is stored in FP-tree



FP-growth
• Divide and conquer strategy is used

1. Find all itemsets containing {a}
2. Find all itemsets not containing {a}

• For 1. Only transactions containing {a} are 
necessary  ({a} can be removed)
=> {a}-conditional database

• For 2. {a} can be removed from all transactions
• Apply recursively



Apriori vs. Eclat vs. FP-growth
• Which is best?  Depends on data
• Apriori better for huge databases
• Eclat most of the time better than FP-growth
• Many optimizations exist! (see FIMI)

• FP-growth paper title says: “Mining Frequent 
Patterns without candidate generation”

• Where did the candidates go?



Some FIMI results







Some FIMI conclusions
• There is no clear winner
• Much depends on implementation details
• Experiments should be reproducible and therefore 

source code should be available!



Extensions
• Maximal Itemset Mining [Bayardo, 1998]

- One might not be interested in all frequent itemsets, 
but only in the maximal ones

- optimized algorithms exist

• Closed Itemset Mining [Pasquier et al., 1999]
- Suppose A=>X holds with 100% confidence
- Then, every itemset containing A also occurs with all 

subsets of X, with exactly the same support
- Only reporting A U X is sufficient



Extensions
• Non derivable Itemset Mining [Calders et al, 2002]

- support bounds of an itemset can be derived from its 
subsets using the inclusion-exclusion principle

- if these bounds are tight, then the support of that 
itemset is derivable

- only reporting the non-derivable itemsets is sufficient



Outline
• Mining association rules
• Algorithms

- Apriori
- Eclat
- FP-growth

• Optimizations and Extensions
• Other pattern types
• General levelwise search
• Other interestingness measures



Complex Patterns
• Sets

• Sequences
• Graphs
• Relational Structures

• Generation and Counting of such patterns becomes 
much more complex too!



Sequences
• CGATGGGCCAGTCGATACGTCGATGCCGATGTCACGA



Patterns in Sequences
• Substrings
• Regular expressions (bb|[^b]{2})
• Partial orders
• Directed Acyclic Graphs
• Episodes



Episode mining
• Given a sequence of events
• ABCDBABDABDBSBDBCSBABCBSBCA
• A sequential episode is an ordered list of events
• Goal: Find all frequently occurring (sequential) 

episodes



• Event sequence: sequence of pairs (e,t), e is an 
event, t an integer indicating the time of occurrence 
of e.

• An linear episode is a sequence of events 
<e1, …, en>.

• A window of length w is an interval [s,e] with 
(e-s+1) = w.

• An episode E=<e1, …, en> occurs in sequence 
S=<(s1,t1), …, (sm,tm)> within window W=[s,e] if 
there exist integers s ≤ i1 < … < in ≤ e such that for 
all j=1…n, (ej,ij) is in S.

Episode Mining



• The w-support of an episode E=<e1, …, en> in a 
sequence S=<(s1,t1), …, (sm,tm)> is the number of 
windows W of length w such that E occurs in S 
within window W.

• Note: If an episode occurs in a very short time span, 
it will be in many subsequent windows, and thus 
contribute a lot to the support count!

• An episode E1=<e1, …, en> is a sub-episode of 
E2=<f1,…,fm>, denoted E1 ≤ E2 if there exist 
integers  1≤ i1 < … < in ≤ m such that for all 
j=1…n, ej=fij.



Example
• S = <(b,1), (a,2), (a,3), (c,4), (b,5), (a,6), (a,7), (b,8), (c,9) >

• E = < b, a, c >

• E occurs in S within window [0,4], within [1,4], within [5,9], …

• The 5-support of E in S is 3, since E is only in the following 
windows of length 5: [0,4], [1,5], [5,9]

• < b, a, a, c > is a sub-episode of <a, b, c, a, a, b, c>.



• Given a sequence w, a minimal support minsup, and a 
window width w, find all episodes that have a w-
support above the minimum support.

• Monotonicity
Let S be a sequence, E1, E2 episodes, w an integer.
If E1 ≤ E2, then the w-freq(E2) ≤ w-freq(E1).

• We can again apply a level-wise algorithm like Apriori.

• Start with small episodes, only proceed with a larger 
episode if all sub-episodes are frequent.

• <a,a,b> is evaluated after <a>, <b>, <a,a>, <a,b>, 
and only if all these episodes were frequent.

Problem



Graphs



Patterns and Rules over Graphs

f: 5
f: 8

f: 4

f: 7

0.8
0.5

0.57



Relational Databases



Patterns in RDBs
• Query 1:

- Select L.drinker, V.bar
From Likes L, Visits V
Where V.drinker = L.drinker
And L.beer = ‘Duvel’

• Query 2:
- Select L.drinker, V.bar

From Likes L, Visits V, Serves S
Where V.drinker = L.drinker
And L.beer = ‘Duvel’
And S.bar = V.bar
And S.beer = ‘Duvel’



Patterns in RDBs
• Association Rule: 

                 Query 1 => Query 2

• If a person that likes Duvel visits bar, 
then that bar serves Duvel



Pattern Mining in general
•Given:

- A database
- A partially ordered class of patterns
- An interestingness measure (e.g. support)
which is monotone w.r.t. partial order

• Problem:
- Find all interesting patterns



Solution
• Generate ‘small’ set of candidate patterns
• Test interestingness measure
• Remove all uninteresting patterns from 

search space according to monotonicity
• Repeat until all interesting patterns have 

been found

• [Mannila et al., DMKD 1(3), 1997]



Other constraints or interestingness
• When monotone, Apriori technique can be used
• What if they are not monotone?
• For example:

- minimum size of itemset or total price of itemset
- database can be reduced!

• Another example:
- Mining Tiles





Motivation

• What makes my database unique?

• Describe my database using only a small 
description

• For example: using itemsets



Motivation

• Which itemsets describe my database best?

• Interestingness measures?
• Most are subjective depending on the 

specific application
• Support/Frequency is objective



Tiles

• A tile is an itemset together with the 
transactions in which it occurs



Tiles

• We only consider maximal tiles
(= closed)



Tile Mining

• The area of a tile is the number of 1’s 
occurring in it

• Goal: Find all tiles with area at least s

















Can we efficiently find them?

• Area of tiles is not monotone 
w.r.t. set inclusion 

• Mining tiles and tilings is NP-hard 
(~maximum edge biclique problem)



The LTM algorithm

• Branch and bound
• Traverse itemset lattice depth-first 

(like Eclat and FP-growth)

• At every node, bound the size of the largest 
tile that can still be found



The bound

• For every item, we count the number of 
transactions of size larger than k in which 
the item occurs

1 100
2 80
3 60
4 40
5 20
… …

100
160
180
160
100
…



The Dynamics

• If an item can not occur in a large tile 
anymore, we can remove it

• If a transaction can not contribute to a large 
tile anymore, we can remove it

• If an item in a specific transaction can not 
contribute to a large tile, we can remove it 
from that transaction

• Results in shorter transactions
• Recompute the bounds





The End
C++ Implementations of Apriori, Eclat, FP-growth and 
several other algorithms are available on my webpage
http://www.adrem.ua.ac.be/~goethals/software/
and on
http://fimi.cs.helsinki.fi/

Sources: I used some material from slides of Jiawei 
Han and Toon Calders

http://www.adrem.ua.ac.be/~goethals/software/
http://www.adrem.ua.ac.be/~goethals/software/
http://fimi.cs.helsinki.fi
http://fimi.cs.helsinki.fi

