

Frequent Pattern Mining

Bart Goethals

University of Antwerp, Belgium ADReM research group

http://www.adrem.ua.ac.be/~goethals/

What this talk is about

- One of the most popular problems in computer science!
- [Agrawal, Imielinski, Swami, SIGMOD 1993]
 13th most cited across all computer science
 [Agrawal, Srikant, VLDB 1994]
 15th most cited across all computer science
- [Goethals, 2003] a nice survey
- several other very interesting papers

Pattern Mining

- Unsupervised learning
- Local (vs. global models)
- Useful for
 - large datasets
 - exploration: « what is this data like? »
 - building global models
- Less suitable for
 - well-studied and understood problem domains

Outline

- Mining association rules
- Algorithms
 - Apriori
 - Eclat
 - FP-growth
- Optimizations and Extensions
- Other pattern types
- General levelwise search
- Other interestingness measures

Back in 1993 ...

- Find associations between products
- For example: a supermarket

- which products are frequently bought together?
- do some products influence the sales of other products? e.g. "75% of people who buy beer, also buy chips"

Applications

- Supermarket
 - cross selling
 - product placement
 - special promotions
- Websearch
 - which keywords often occur together in webpages?
- Health care
 - frequent sets of symptoms for a disease
- Prediction
 - associative classifiers
- ...

Applications

- Basically works for all data that can be represented as a set of examples/objects having certain properties
 - patient / symptoms
 - movies / ratings
 - web pages / keywords
 - basket / products

- ...

Formally

- A transaction database is a collection of sets of items (transactions)
- An **itemset** is a set of items
- An association rule is an implication of the form X=>Y, with X and Y itemsets
- Support Count (SC) of an itemset X is the number of transactions that contain X
- Support of X (also frequency of X) = SC(X)/SC({})
- Support of an association rule X=>Y equals the support of X U Y
- Confidence of an association rule X=>Y
 Support(X=>Y) / Support(X)

Problem

- Given:
 - a transaction database
 - a minimum support threshold
 - a minimum confidence threshold
- Find all rules X=>Y such that:
 - Support(X=>Y) > minsup (X=>Y is frequent)
 - Confidence(X=>Y) > minconf (X=>Y is confident)

Example

Tid	Transaction
1	shoes, socks, T-shirt
2	socks, sweater, pants
3	T-shirt, pants, socks
4	shoes, socks

- minimum support = 2
- minimum confidence = 2/3
- {shoes} ⇒ {socks} is a
 confident association rule with support = 0.5, confidence = 1
- {socks} ⇒ {shoes} is not
- Sweater can not appear in a rule

How?

- Solution #1:
 - Generate all possible rules
 - Count their supports and compute confidence
 - INTRACTABLE... (3ⁿ possible combinations)
- Solution #2:
 - First, find all frequent itemsets
 - Second, split every frequent itemset Z in two parts X and Y, such that X ⇒Y is confident
 - Example: I = {A,B,C}
 test rules {A,B}⇒{C}, {AC}⇒{B}, {B,C}⇒{A},
 {A}⇒{B,C}, {B}⇒{A,C}, {C}⇒{A,B}

How to find all frequent itemsets?

- Solution #1:
 - Generate all possible itemsets
 - Count their support in DB
 - INTRACTABLE... (2ⁿ possible combinations)

How to find all frequent itemsets?

- Solution #2:
 - Apriori
 - Rakesh Agrawal and Srikant Ramakrishnan [VLDB, 1994]
 - Heikki Mannila and Hannu Toivonen [KDD, 1994]

Apriori

Key observation: (monotonicity)

A subset of a frequent itemset must also be frequent, or,

any superset of an infrequent itemset must also be infrequent!

Apriori

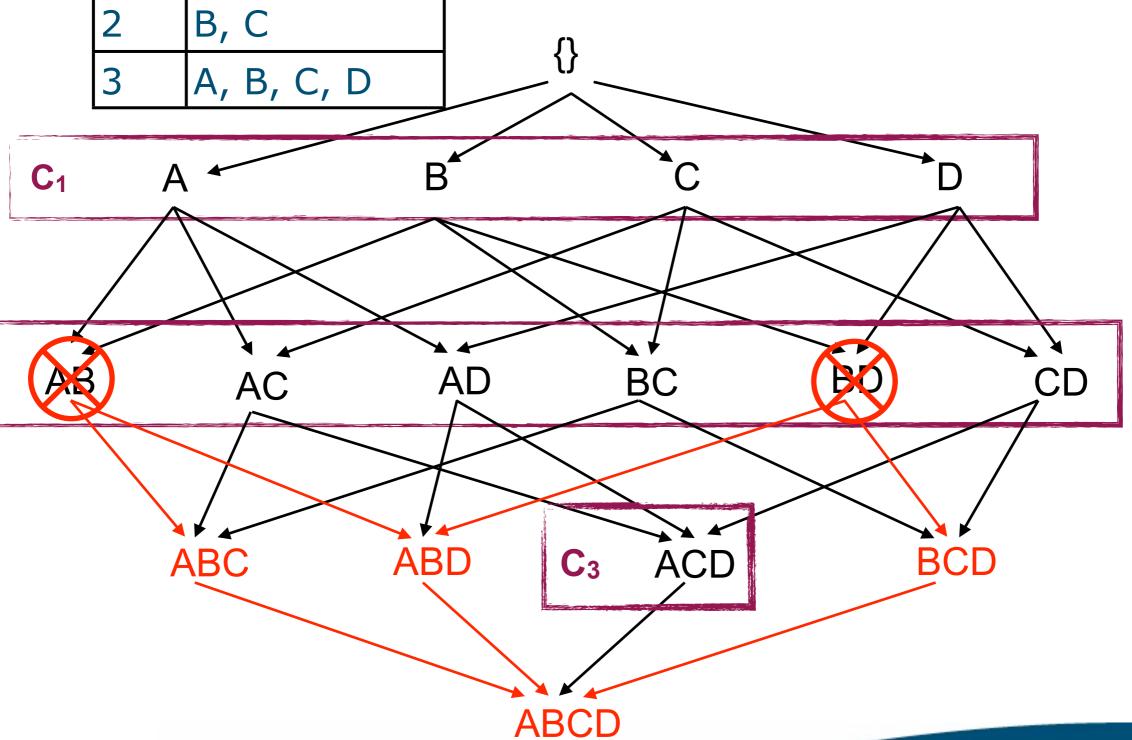
- An itemset is called a candidate itemset if all of its subsets are known to be frequent
- Solution:
 Iteratively find frequent itemsets with cardinality from 1 to k (k-itemset)

Example

- Start with small itemsets, only proceed with larger itemset if all subsets are frequent
- { A,B,C } is evaluated after {A}, {B}, {C}, {A,B}, {A,C}, and {B,C}, and only if all these sets are known to be frequent

 C_2

Level-wise search

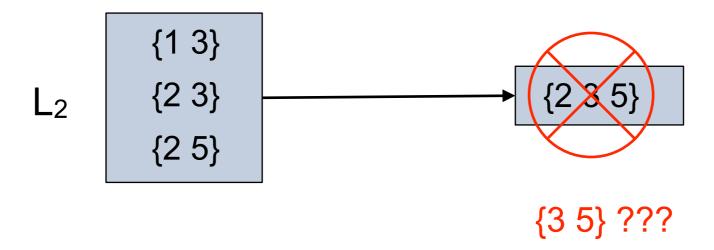


The Apriori Algorithm

```
C_k: candidate itemset of size k
L_k: frequent itemset of size k
L_1 = \{ frequent items \};
for (k = 1; L_k! = \emptyset; k++) do begin
  C_{k+1} = candidates generated from L_k;
  for each transaction t in database do
   increment the count of all candidates in C_{k+1}
   that are contained in t
  L_{k+1} = candidates in C_{k+1} with min_support
  end
return \bigcup_k L_k;
```


Candidate Generation

- for all itemsets X, Y with X[:-1]=Y[:-1]
- X + Y[-1:] is a candidate itemset,
- only if all its subsets are known to be frequent
- note that {1,2,3} was not even considered



Example run

 L_1

TID	Items
100	1 3 4
	235
300	1235
400	2 5

C_{I}		
\mathcal{C}_I	itemset	sup.
	{1}	2
an D	{2}	3
	{3}	3
	{4 }	1
	<i>{</i> 5 <i>}</i>	3

 C_2

itemset	sup.
{1}	2
{2}	3
{3}	3
{5}	3

L_2		
-2	itemset	sup
	{1 3}	2
	{2 3}	2
	{2 5}	3
	{3 5}	2
<u> </u>		

itemset	sup
{1 2}	1
{1 3}	2
{1 5}	1
{2 3}	2
{2 5}	3
{3 5}	2

	_	nemset
		{1 2}
Scan D		{1 3}
Scall D		{1 5}
		{2 3}
		{2 5}
		{3 5}

itemset {2 3 5}

Scan D L_3 itemset sup $\{2 \ 3 \ 5\}$ 2

Universiteit Antwerpen

Apriori's main problem

 In every count step we have to do a very costly scan over the complete database.

Optimizations

- Dynamic Itemset Counting [Brin et al., 1997]
 - interrupt algorithm after every M transactions and already generate larger candidates if possible
- Partition [Savasere et al., 1995]
 - partition database, and mine each part separately (using relative minsup!)
 - Union of all frequent itemsets of all parts are a superset of all frequent itemsets in complete database!
 - Extra pruning step
- Sampling [Toivonen, 1995]
 - Run apriori on small sample of DB
 - Correct result

Current Research

- Until today, many researchers still try to find new techniques, and improve Apriori
 - Optimized for sparse/dense data
 - Optimized for many/few items
- Implementation issues are important
 - How to implement the counting step
 - How to read the database
 - How to generate the candidates
 - How to prune the candidates
 - Ordering of items is important!
- For more info: visit http://fimi.cs.helsinki.fi/

What if DB fits in memory?

- Faster counting of supports!
- Two new techniques differ in counting strategy and how the database is represented in memory
 - Eclat [Zaki et al., KDD 1997]
 - FP-growth [Han et al., SIGMOD 2000]

Eclat: tidlist

 For every item, a list of transaction id's is stored in which the item occurs, denoted by tidlist

 For every itemset, its tidlist equals the intersection of the tidlists of two of its subsets

Eclat: tidlist example

1	{a,b}
2	{a}
3	{a,b}
4	{a}
5	{a,b}
6	{b}
7	{b}

Eclat: algorithm

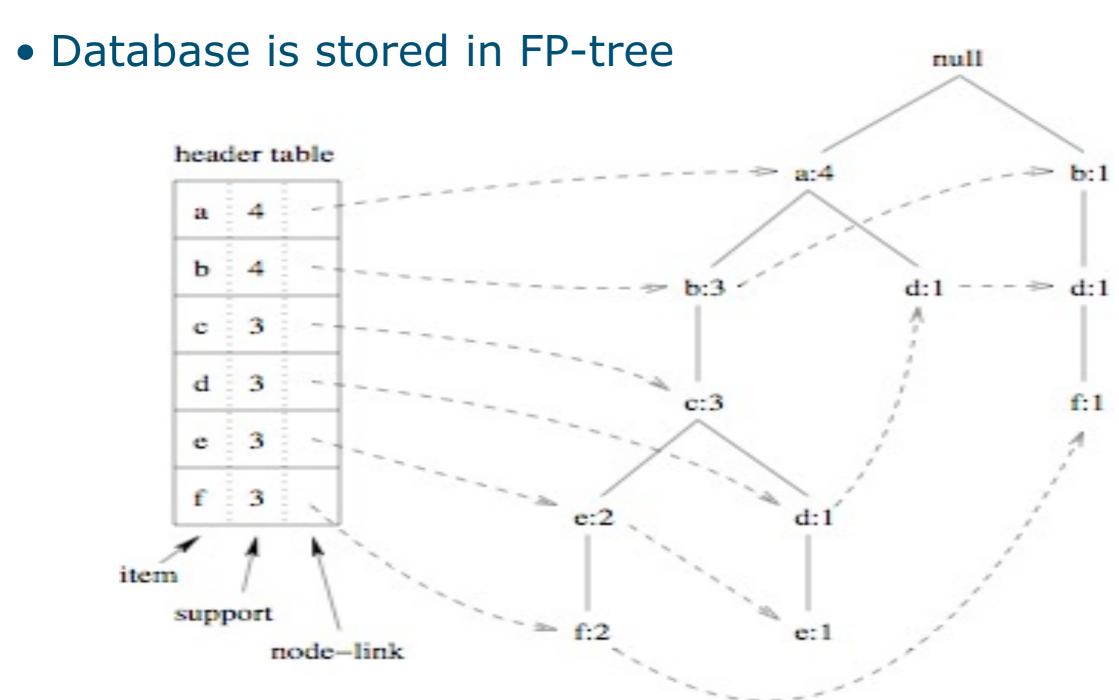
- In principle Apriori could be used together with intersection based support counting
- Memory usage, however, would blowup!
- Therefore, a depth-first approach is used

Divide and conquer

- 1. Find all itemsets containing {a}
- 2. Find all itemsets not containing {a}
- For 1. Only transactions containing {a} are necessary ({a} can be removed)
 => {a}-conditional database
- For 2. {a} can be removed from all transactions
- Apply recursively

Eclat: algorithm

- 1. Get tidlist for each item (DB scan)
- 2. Tidlist of {a} is exactly the list of transactions containing {a}
- 3. Intersect tidlist of {a} with the tidlists of all other items, resulting in tidlists of {a,b}, {a,c}, {a,d}, ... = {a}-conditional database (if {a} removed)
- 4. Repeat from 1 on {a}-conditional database
- 5. Repeat for all other items



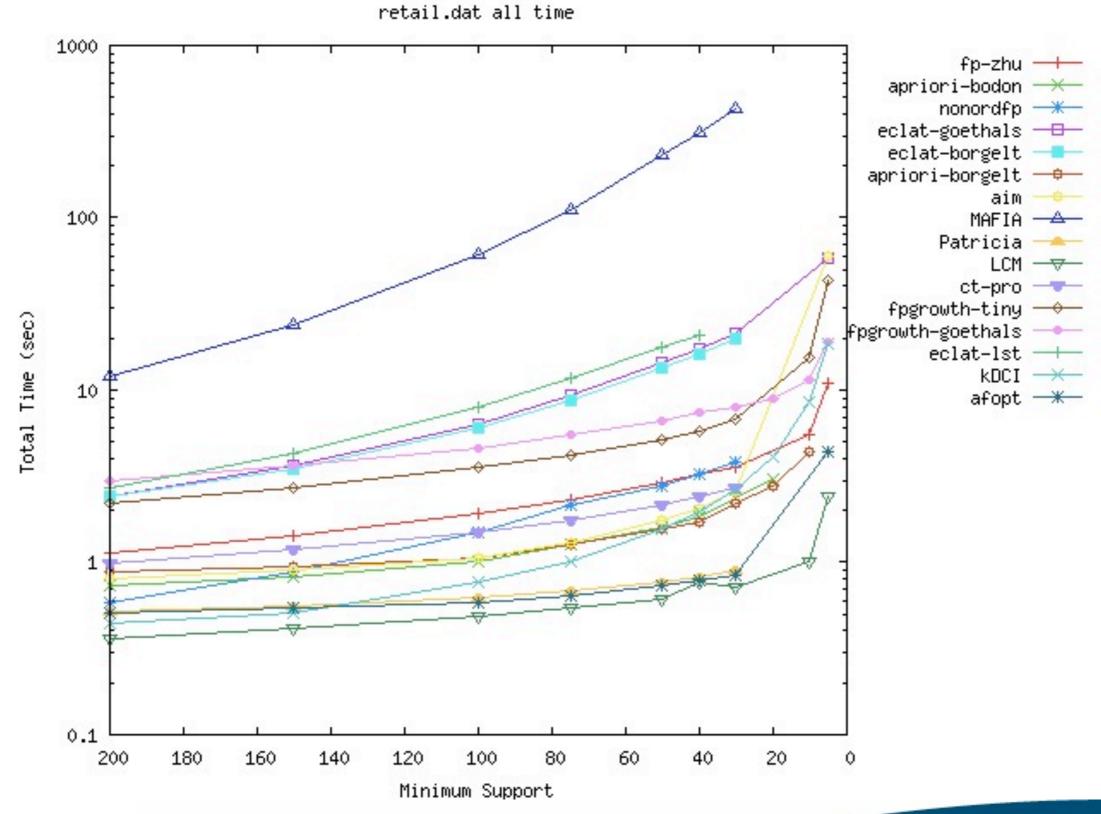
FP-growth

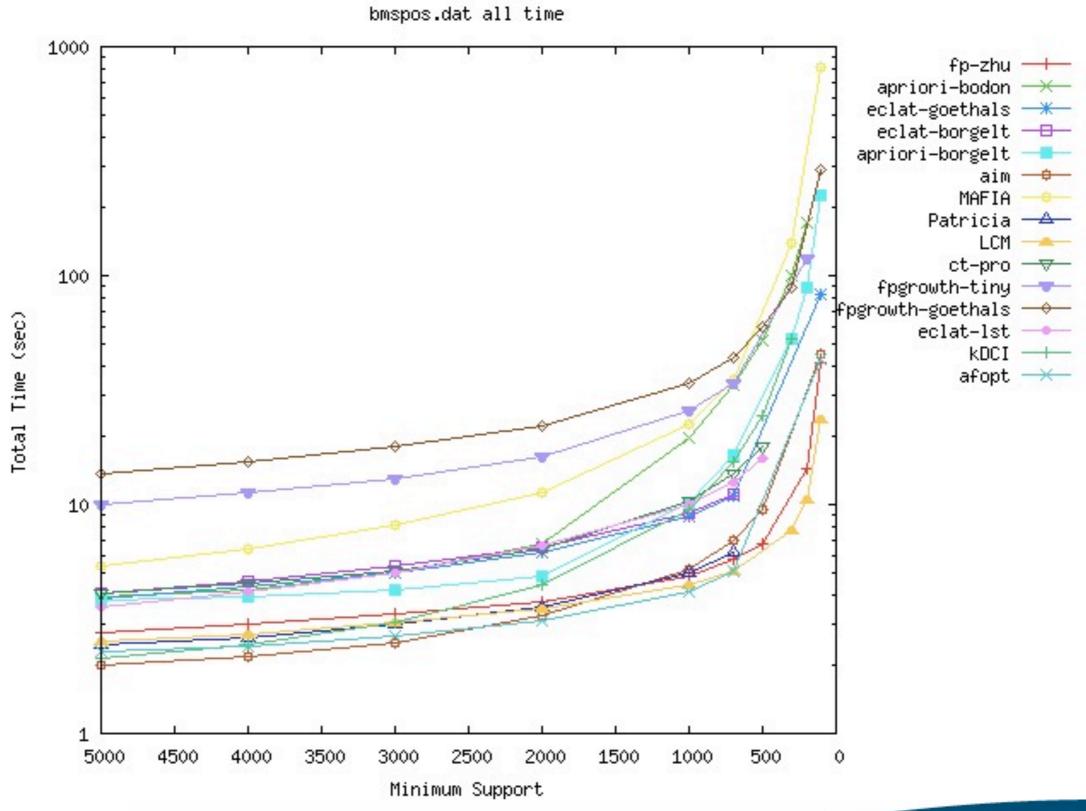
- Divide and conquer strategy is used
 - 1. Find all itemsets containing {a}
 - 2. Find all itemsets not containing {a}
- For 1. Only transactions containing {a} are necessary ({a} can be removed)
 => {a}-conditional database
- For 2. {a} can be removed from all transactions
- Apply recursively

Apriori vs. Eclat vs. FP-growth

- Which is best? Depends on data
- Apriori better for huge databases
- Eclat most of the time better than FP-growth
- Many optimizations exist! (see FIMI)
- FP-growth paper title says: "Mining Frequent Patterns without candidate generation"
- Where did the candidates go?

Some FIMI results





Some FIMI conclusions

- There is no clear winner
- Much depends on implementation details
- Experiments should be reproducible and therefore source code should be available!

Extensions

- Maximal Itemset Mining [Bayardo, 1998]
 - One might not be interested in all frequent itemsets, but only in the maximal ones
 - optimized algorithms exist
- Closed Itemset Mining [Pasquier et al., 1999]
 - Suppose A=>X holds with 100% confidence
 - Then, every itemset containing A also occurs with all subsets of X, with exactly the same support
 - Only reporting A U X is sufficient

Extensions

- Non derivable Itemset Mining [Calders et al, 2002]
 - support bounds of an itemset can be derived from its subsets using the inclusion-exclusion principle
 - if these bounds are tight, then the support of that itemset is derivable
 - only reporting the non-derivable itemsets is sufficient

Outline

- Mining association rules
- Algorithms
 - Apriori
 - Eclat
 - FP-growth
- Optimizations and Extensions
- Other pattern types
- General levelwise search
- Other interestingness measures

Complex Patterns

- Sets
- Sequences
- Graphs
- Relational Structures
- Generation and Counting of such patterns becomes much more complex too!

Sequences

• CGATGGGCCAGTCGATACGTCGATGCCGATGTCACGA

Patterns in Sequences

- Substrings
- Regular expressions (bb|[^b]{2})
- Partial orders
- Directed Acyclic Graphs
- Episodes

Episode mining

- Given a sequence of events
- ABCDBABDABDBSBDBCSBABCBSBCA
- A sequential episode is an ordered list of events
- Goal: Find all frequently occurring (sequential) episodes

Episode Mining

- Event sequence: sequence of pairs (e,t), e is an event, t an integer indicating the time of occurrence of e.
- An linear episode is a sequence of events
 <e₁, ..., e_n>.
- A window of length w is an interval [s,e] with (e-s+1) = w.
- An episode $E=\langle e_1,...,e_n\rangle$ occurs in sequence $S=\langle (s_1,t_1),...,(s_m,t_m)\rangle$ within window W=[s,e] if there exist integers $s\leq i_1<...< i_n\leq e$ such that for all j=1...n, (e_j,i_j) is in S.

- The w-support of an episode $E=\langle e_1,...,e_n\rangle$ in a sequence $S=\langle (s_1,t_1),...,(s_m,t_m)\rangle$ is the number of windows W of length w such that E occurs in S within window W.
- Note: If an episode occurs in a very short time span, it will be in many subsequent windows, and thus contribute a lot to the support count!
- An episode $E_1=<e_1, ..., e_n>$ is a sub-episode of $E_2=<f_1,...,f_m>$, denoted $E_1\leq E_2$ if there exist integers $1\leq i_1<...< i_n\leq m$ such that for all j=1...n, $e_j=f_{ij}$.

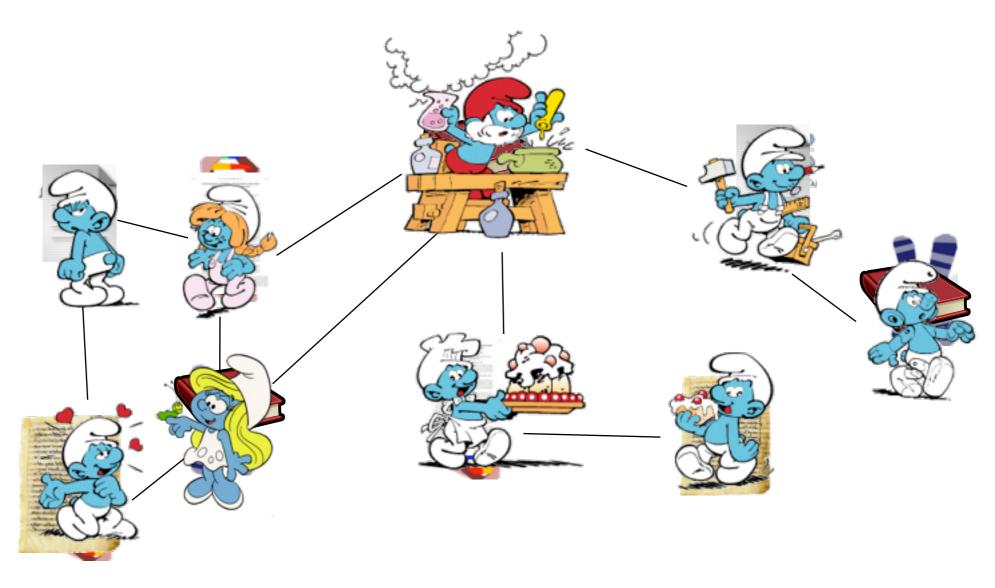
Example

- $S = \langle (b,1), (a,2), (a,3), (c,4), (b,5), (a,6), (a,7), (b,8), (c,9) >$
- E = < b, a, c >
- E occurs in S within window [0,4], within [1,4], within [5,9], ...
- The 5-support of E in S is 3, since E is only in the following windows of length 5: [0,4], [1,5], [5,9]
- < b, a, a, c > is a sub-episode of <a, b, c, a, a, b, c>.

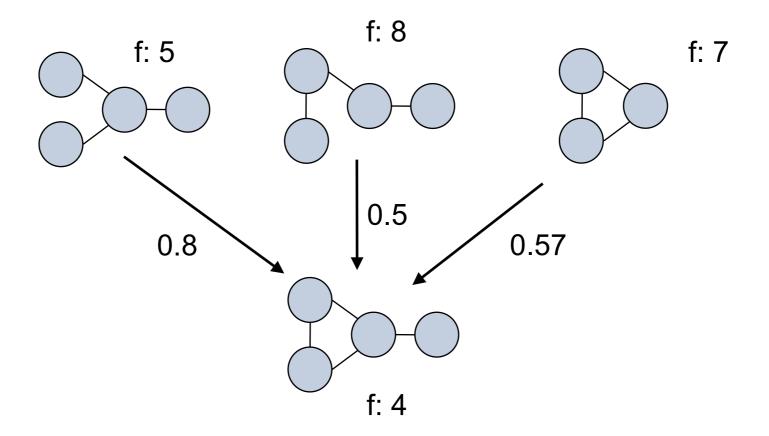
Problem

- Given a sequence w, a minimal support minsup, and a window width w, find all episodes that have a wsupport above the minimum support.
- Monotonicity
 Let S be a sequence, E₁, E₂ episodes, w an integer.
 If E₁ ≤ E₂, then the w-freq(E₂) ≤ w-freq(E₁).
- We can again apply a level-wise algorithm like Apriori.
- Start with small episodes, only proceed with a larger episode if all sub-episodes are frequent.
- <a,a,b> is evaluated after <a>, , <a,a>, <a,b>,
 and only if all these episodes were frequent.

Graphs



Patterns and Rules over Graphs



Relational Databases

Likes(Drinker, Beer) Visits(Drinker, Bar) Serves(Bar, Beer) Likes

Drinker Beer

Allen Duvel
Allen Trappist
Carol Duvel
Bill Duvel
Bill Trappist
Bill Jupiler

Visits

Drinker	Bar
Allen	Cheers
Allen	California
Carol	Cheers
Carol	California
Carol	Old Dutch
Bill	Cheers

Serves

Bar	Beer
Cheers	Duvel
Cheers	Trappist
Cheers	Jupiler
California	Duvel
California	Jupiler
Old Dutch	Trappist

Patterns in RDBs

• Query 1:

Select L.drinker, V.bar
 From Likes L, Visits V
 Where V.drinker = L.drinker
 And L.beer = 'Duvel'

Query 2:

Select L.drinker, V.bar
 From Likes L, Visits V, Serves S
 Where V.drinker = L.drinker
 And L.beer = 'Duvel'
 And S.bar = V.bar
 And S.beer = 'Duvel'

Patterns in RDBs

Association Rule:

 If a person that likes Duvel visits bar, then that bar serves Duvel

Pattern Mining in general

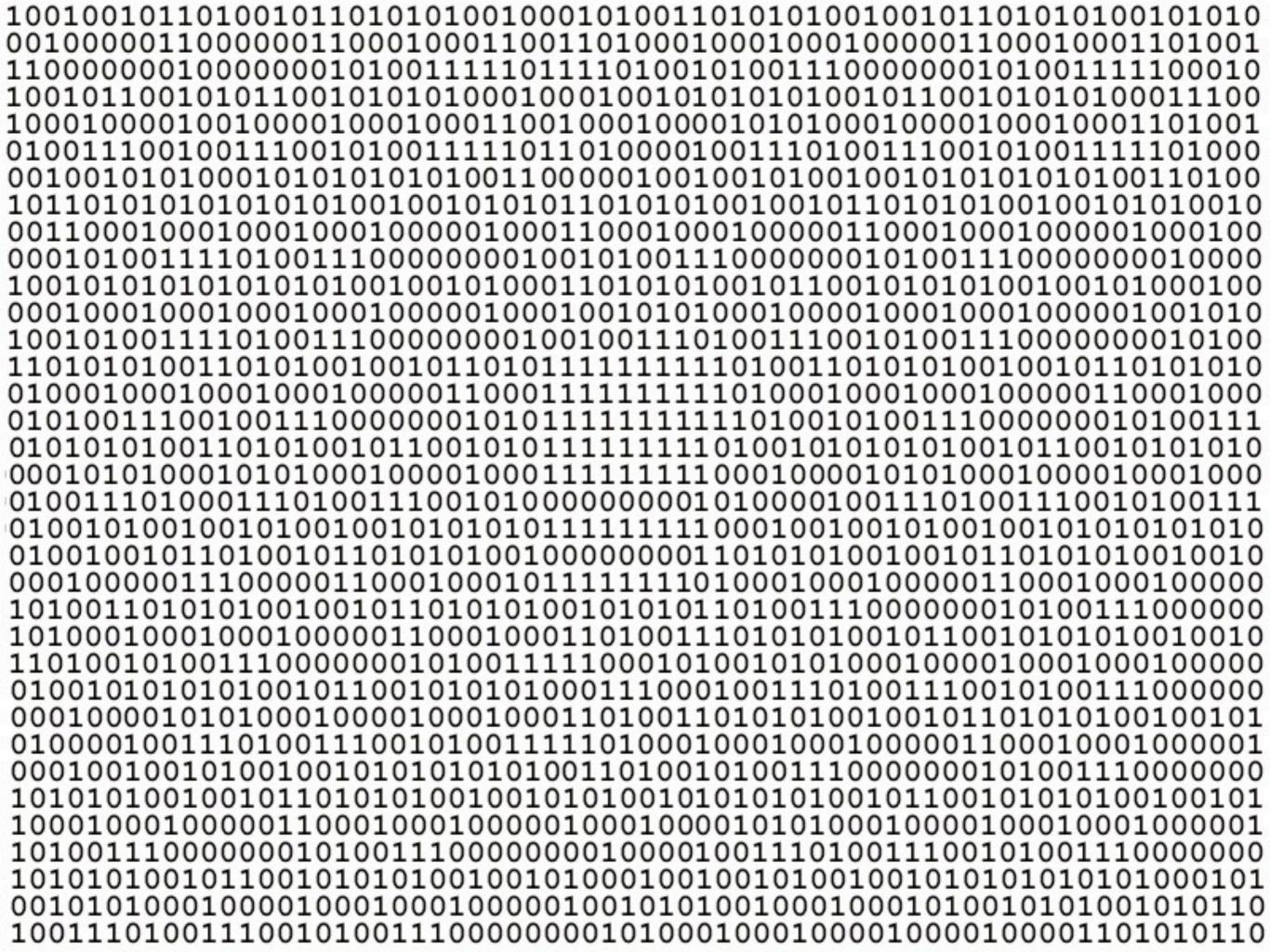
- Given:
 - A database
 - A partially ordered class of patterns
 - An interestingness measure (e.g. support) which is monotone w.r.t. partial order
- Problem:
 - Find all interesting patterns

Solution

- Generate 'small' set of candidate patterns
- Test interestingness measure
- Remove all uninteresting patterns from search space according to monotonicity
- Repeat until all interesting patterns have been found
- [Mannila et al., DMKD 1(3), 1997]

Other constraints or interestingness

- When monotone, Apriori technique can be used
- What if they are not monotone?
- For example:
 - minimum size of itemset or total price of itemset
 - database can be reduced!
- Another example:
 - Mining Tiles



Motivation

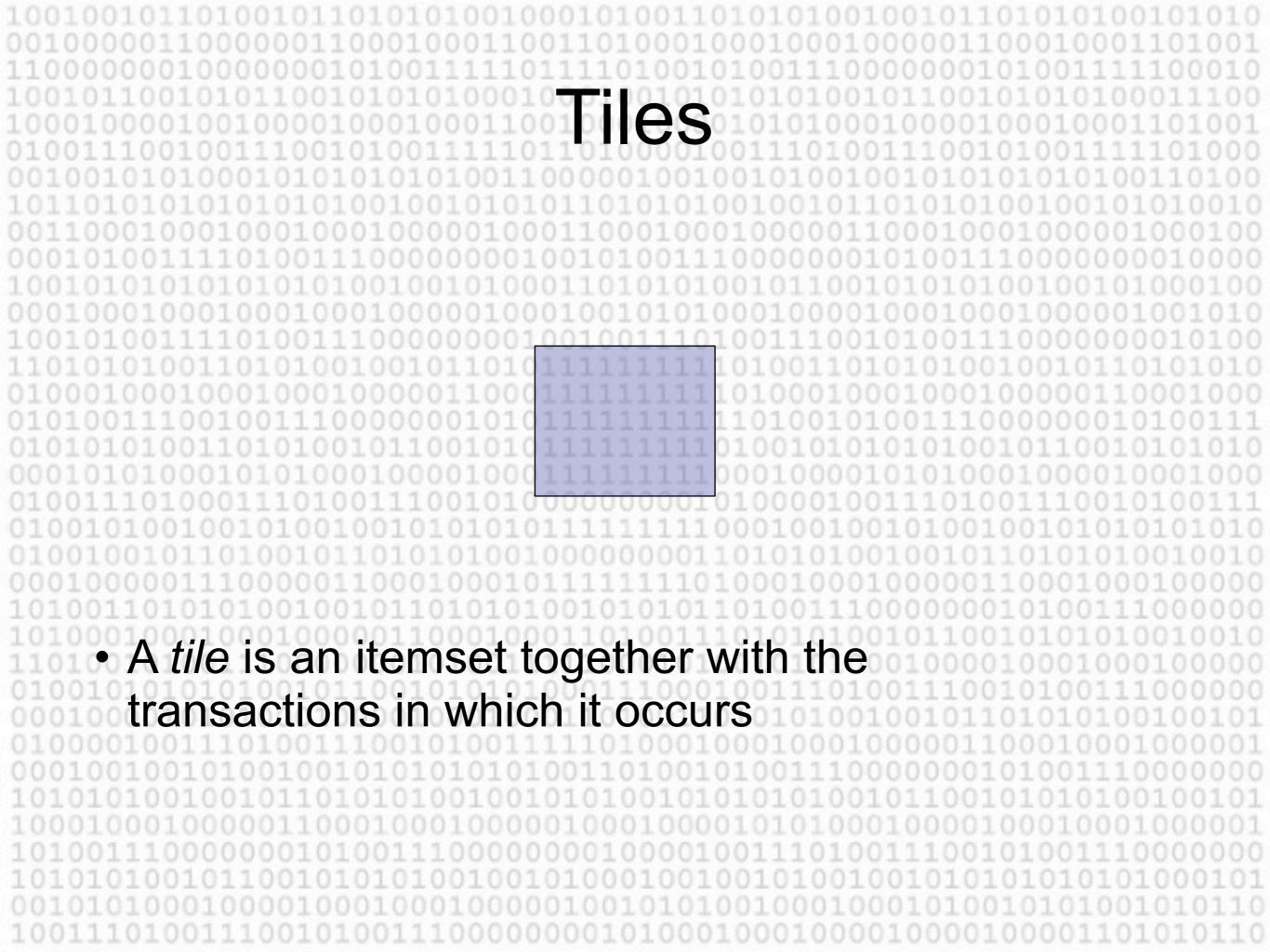
What makes my database unique?

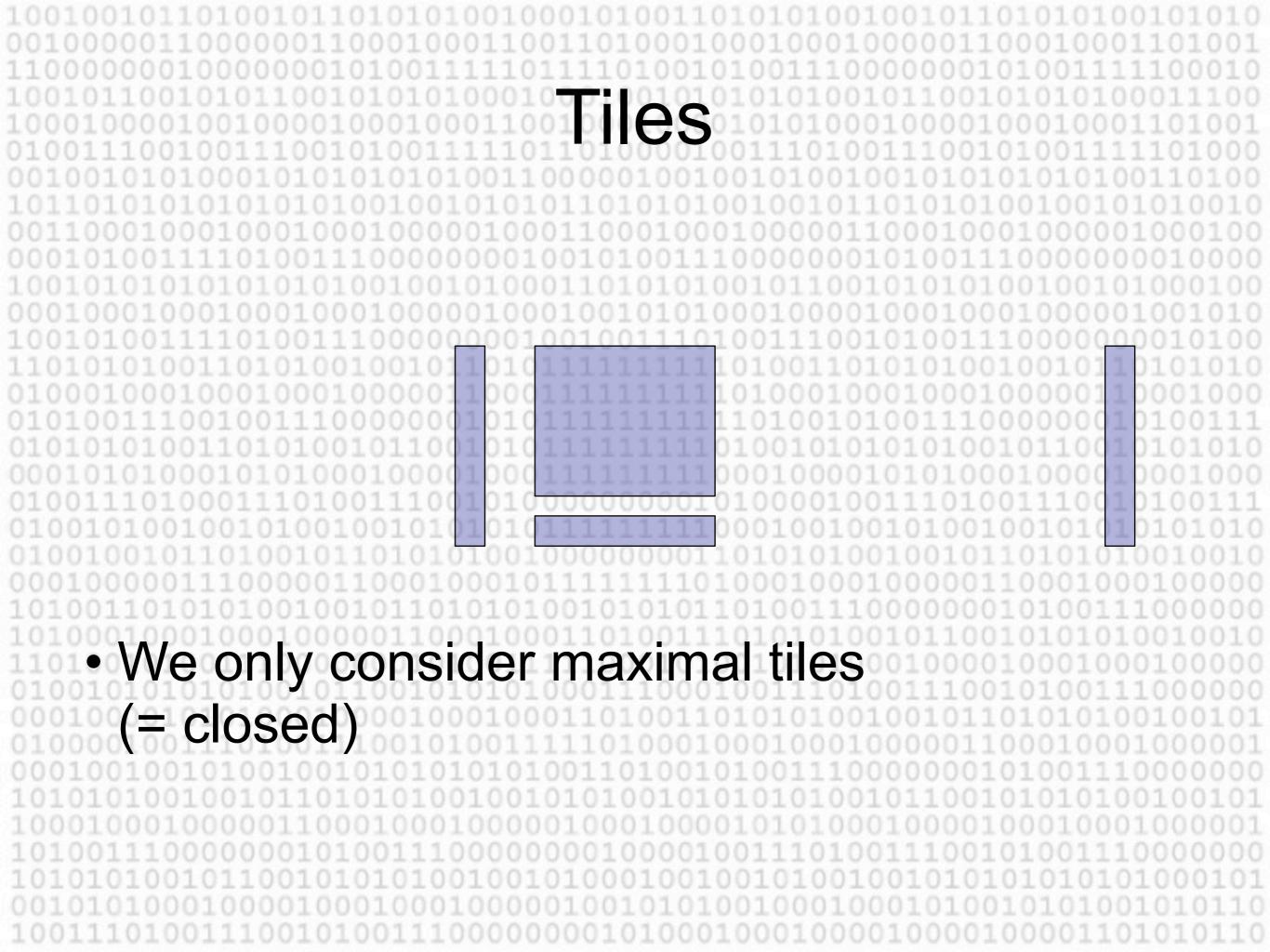
Describe my database using only a small description

For example: using itemsets

Motivation

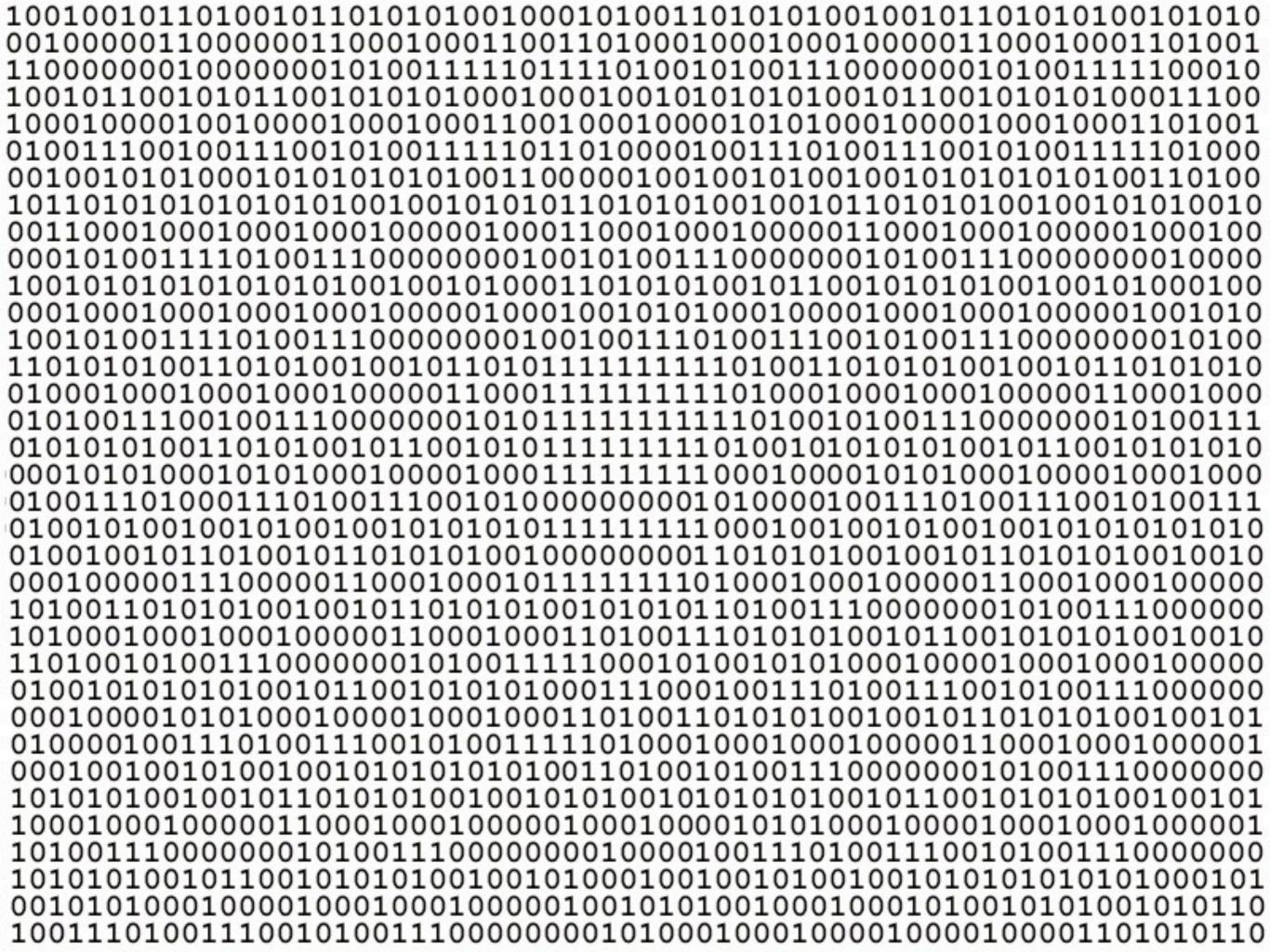
- Which itemsets describe my database best?
- Interestingness measures?
- Most are subjective depending on the specific application
- Support/Frequency is objective

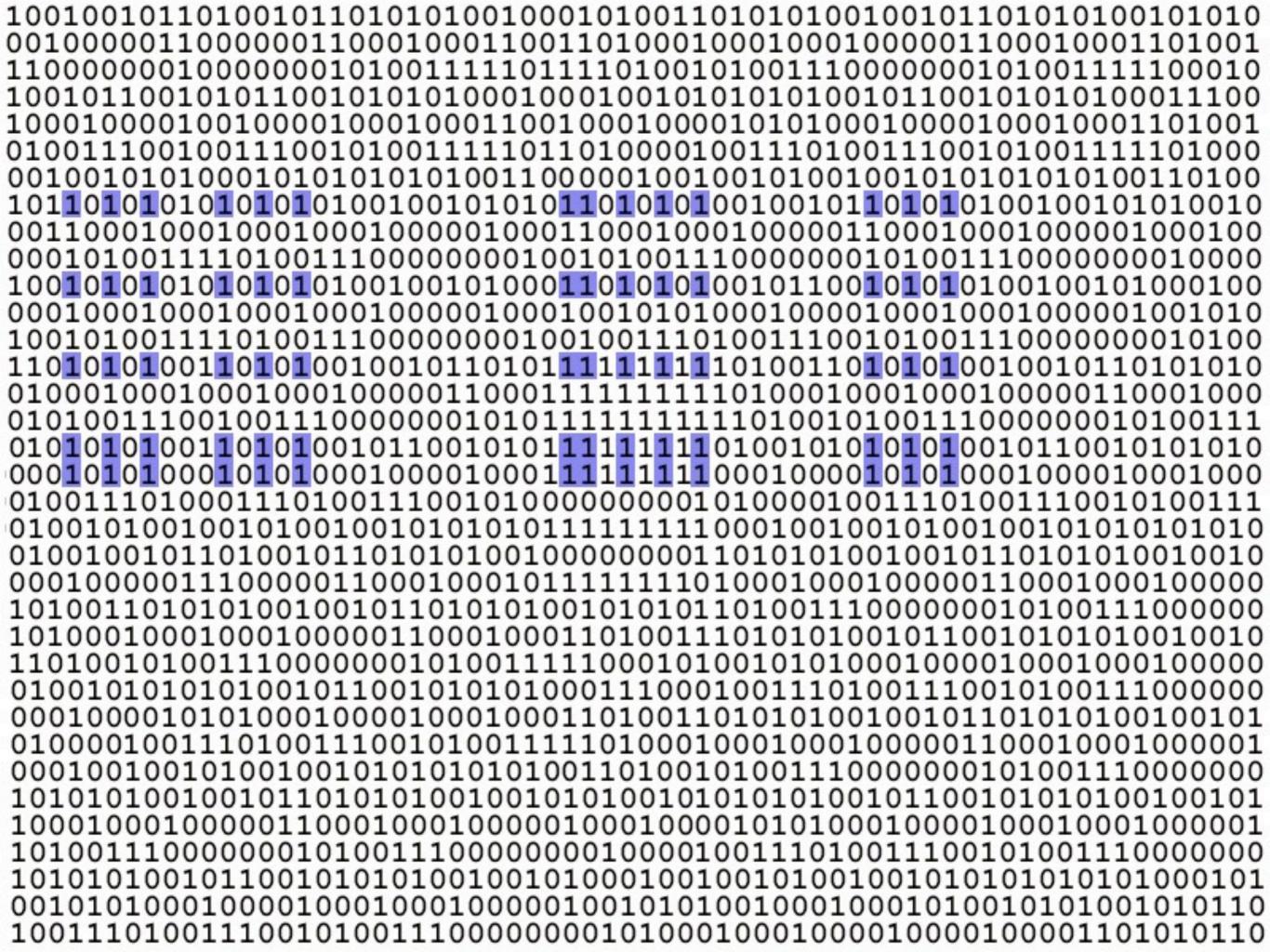


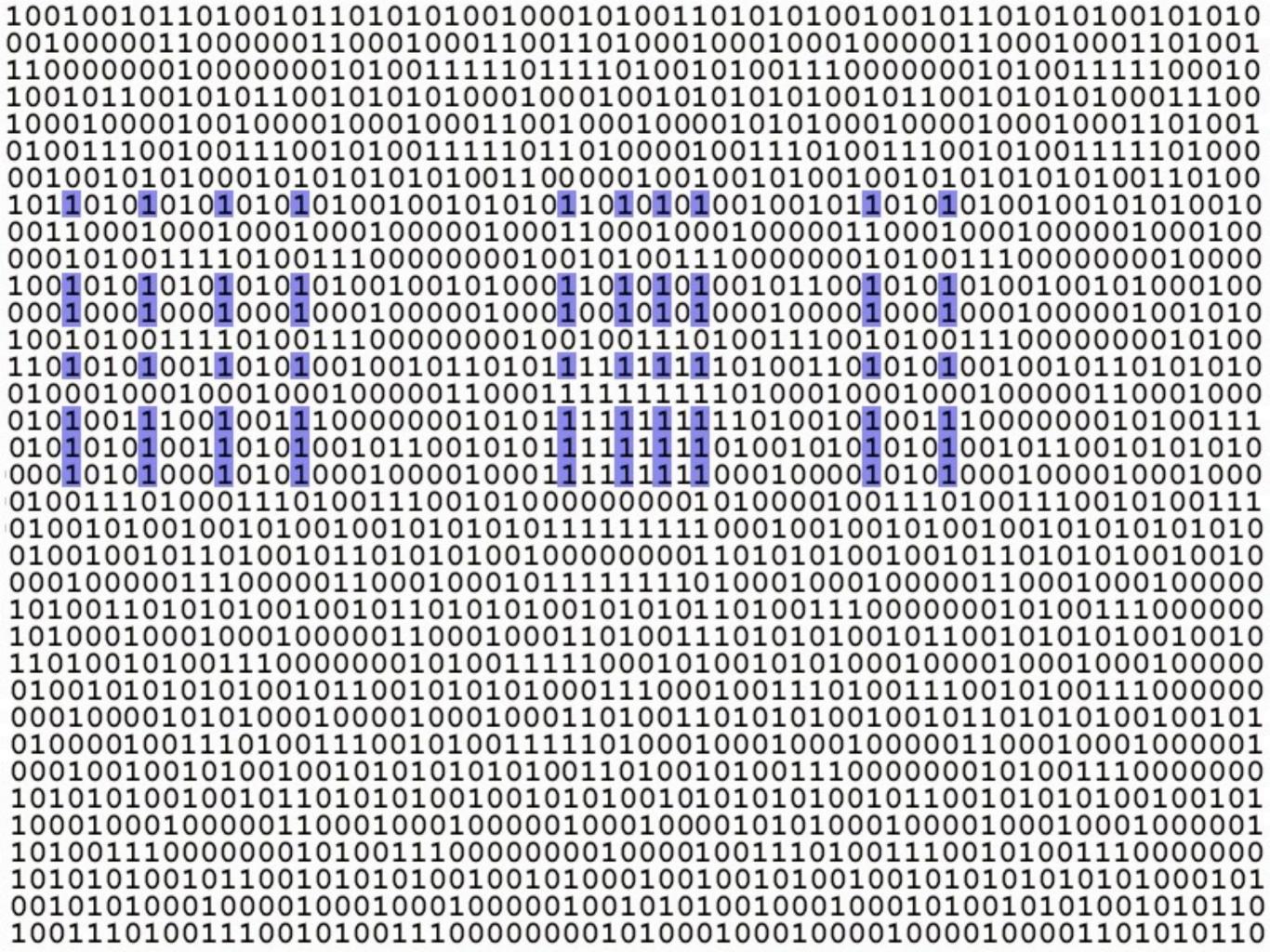


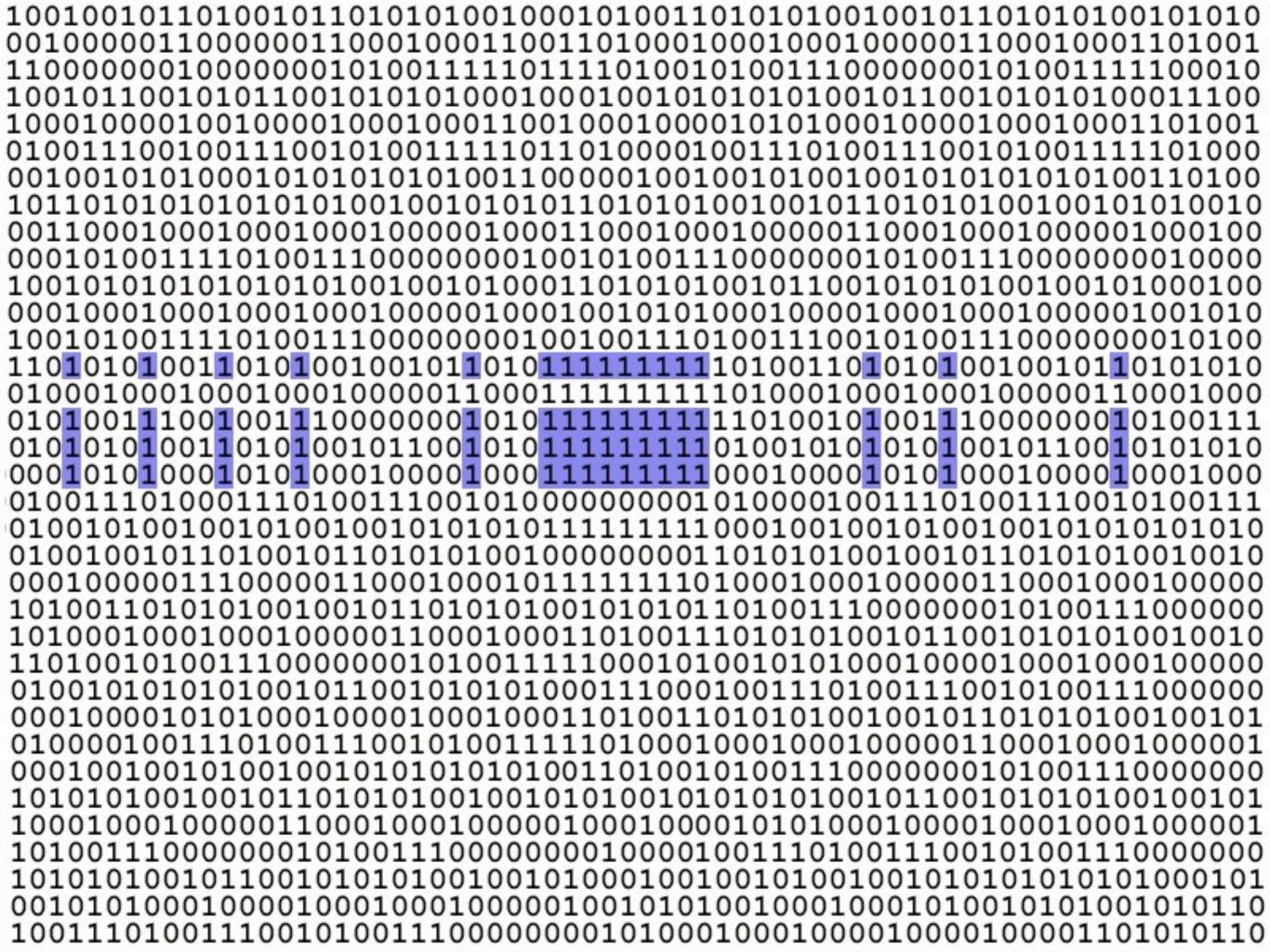
Tile Mining

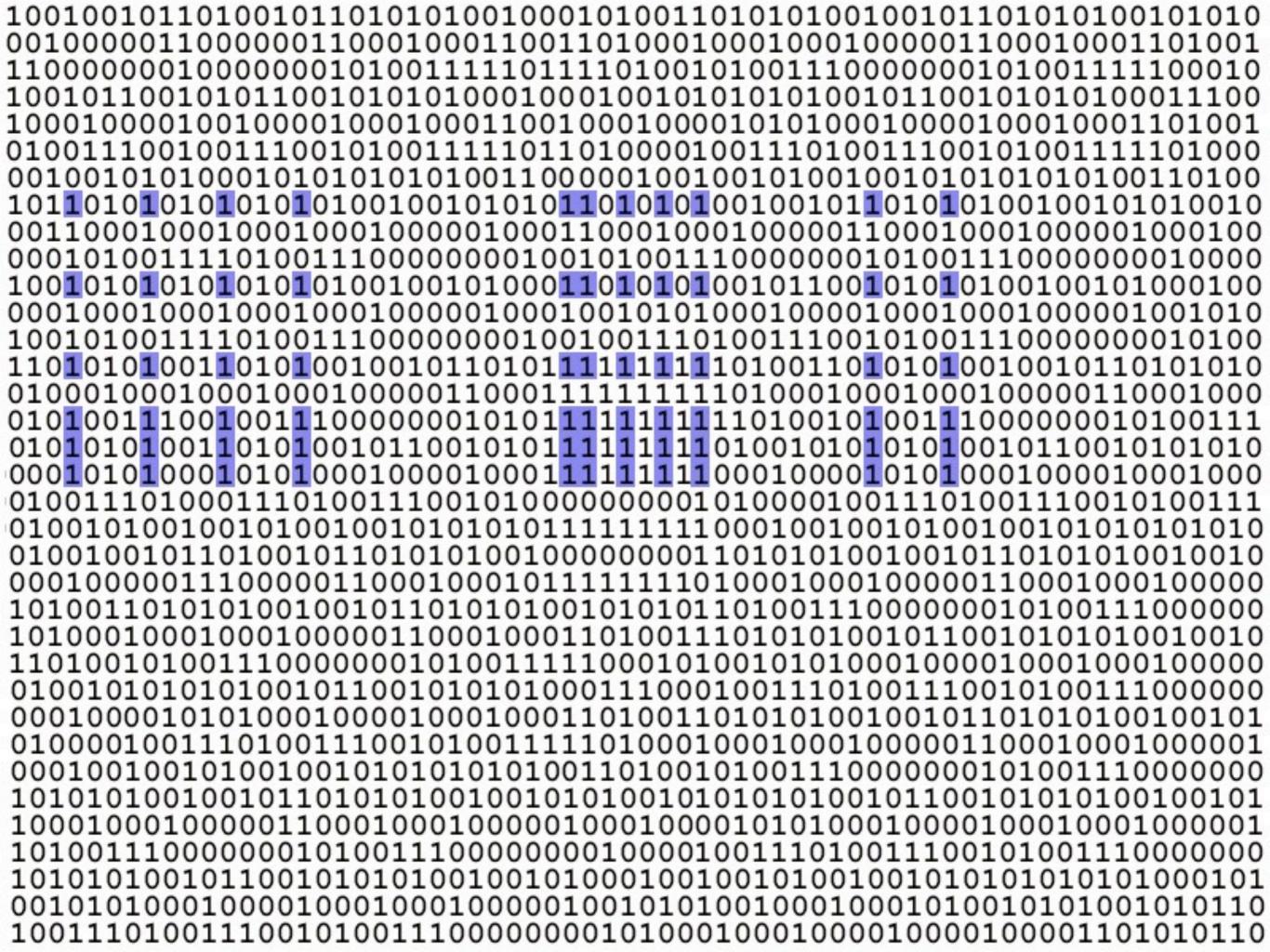
- The area of a tile is the number of 1's occurring in it
- Goal: Find all tiles with area at least s

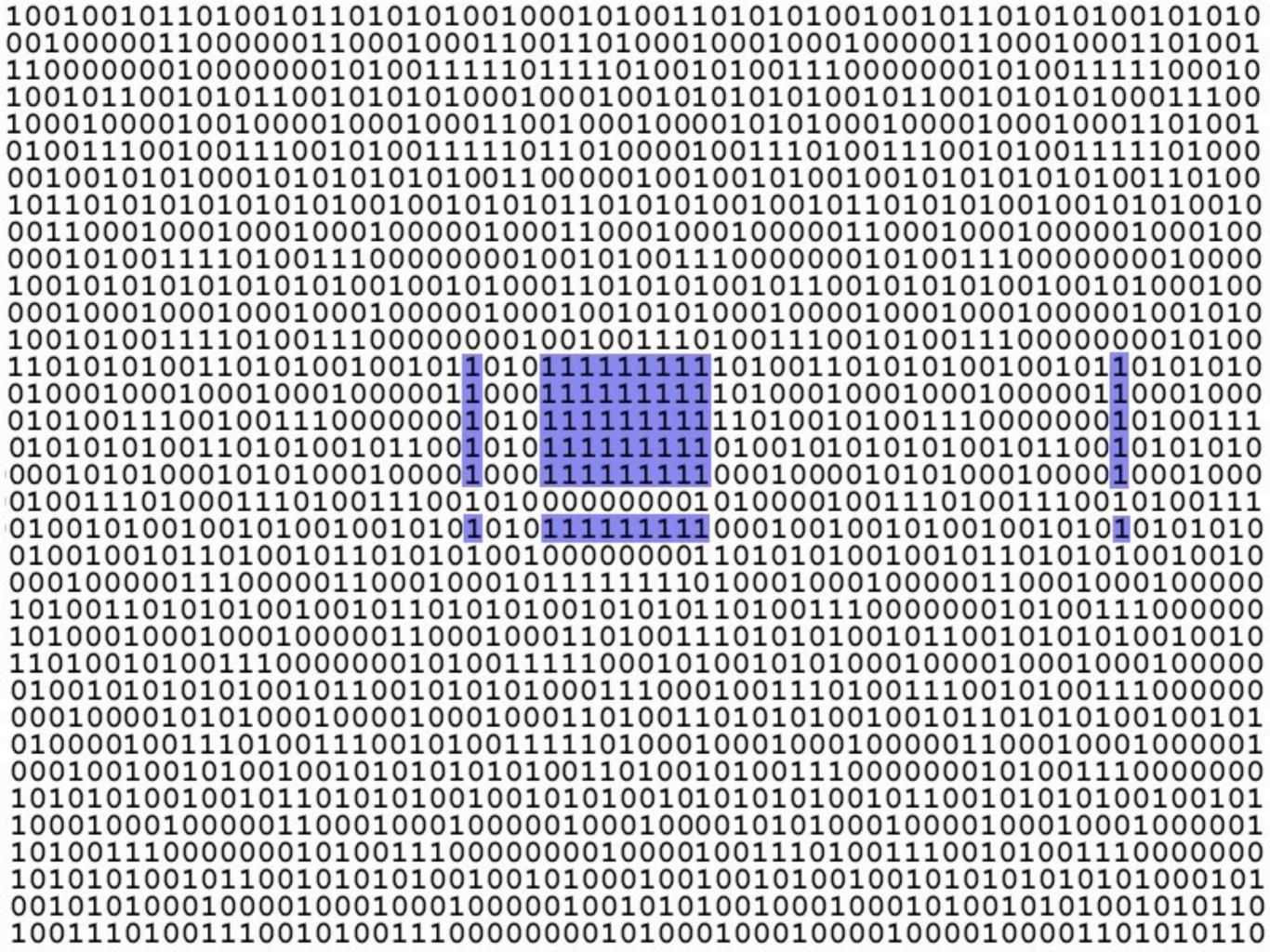


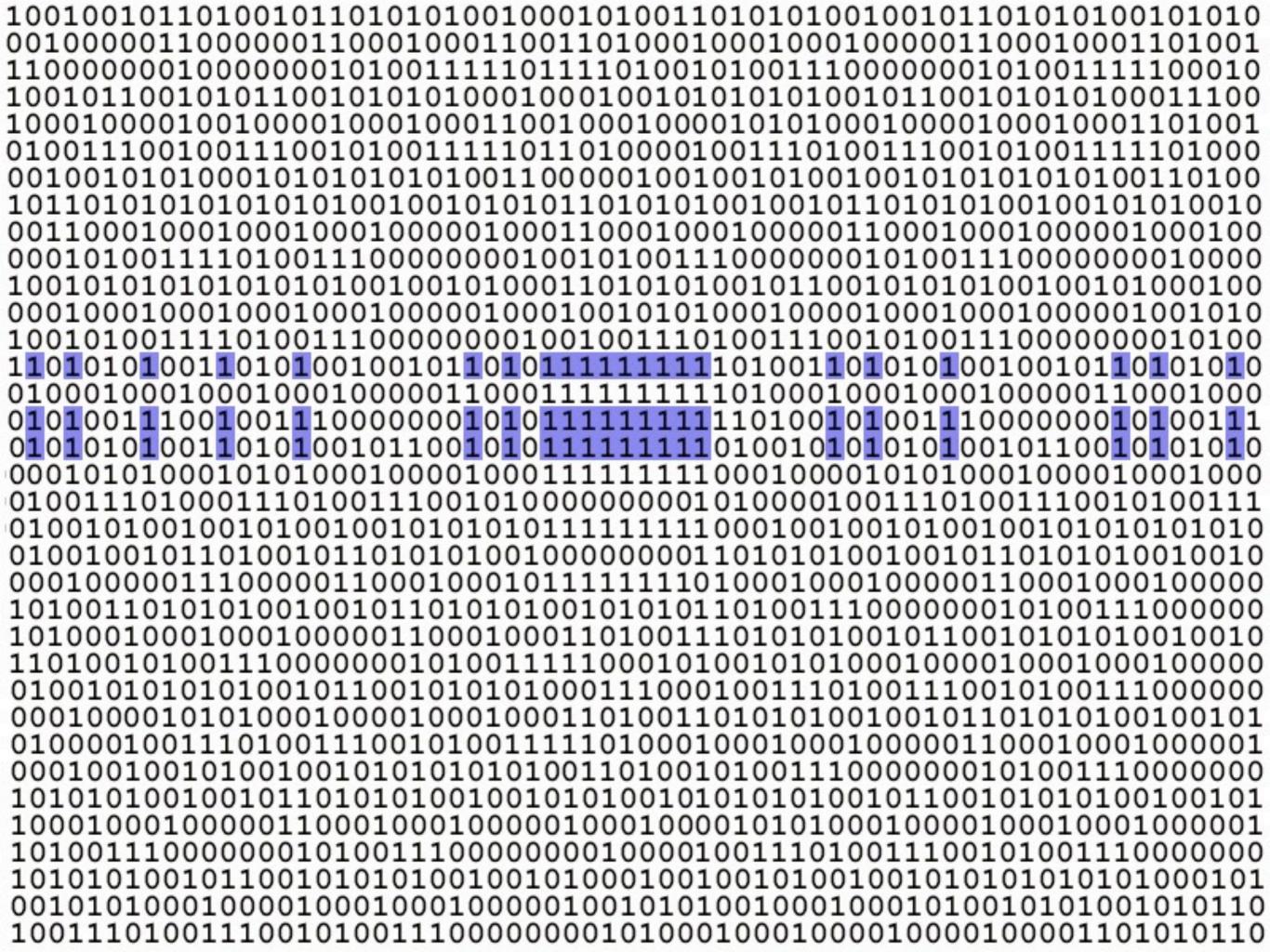












Can we efficiently find them?

 Area of tiles is not monotone w.r.t. set inclusion ⁽³⁾

Mining tiles and tilings is NP-hard (*)
 (~maximum edge biclique problem)

The LTM algorithm

- Branch and bound
- Traverse itemset lattice depth-first (like Eclat and FP-growth)
- At every node, bound the size of the largest tile that can still be found

The bound

 For every item, we count the number of transactions of size larger than k in which the item occurs

100	100	100
2	80	160
3	60	180
4	40	160
5	20	100
010	20	01010101
10000	0000010	00010011

The Dynamics

- If an item can not occur in a large tile anymore, we can remove it
- If a transaction can not contribute to a large tile anymore, we can remove it
- If an item in a specific transaction can not contribute to a large tile, we can remove it from that transaction
- Results in shorter transactions
- Recompute the bounds

The End

C++ Implementations of Apriori, Eclat, FP-growth and several other algorithms are available on my webpage

http://www.adrem.ua.ac.be/~goethals/software/

and on

http://fimi.cs.helsinki.fi/

Sources: I used some material from slides of Jiawei Han and Toon Calders