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Aims:

• Main motivations plus some of the techniques
used

• Some thoughts on why statistics: real vs
spurious

• Different approaches: significance vs stability

• Assessing statistical significance and stability

• Multi-hypothesis, multi-pattern scenarios
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Patterns: real or spurious

• The DNA of the D7S820 genetic locus:

1 aatttttgta ttttttttag agacggggtt tcaccatgtt ggtcaggctg
51 actatggagt tattttaagg ttaatatata taaagggtat gatagaacac

101 ttgtcatagt ttagaacgaa ctaacgatag atagatagat agatagatag
151 atagatagat agatagatag atagacagat tgatagtttt tttttatctc
201 actaaatagt ctatagtaaa catttaatta ccaatatttg gtgcaattct
251 gtcaatgagg ataaatgtgg aatcgttata attcttaaga atatatattc
301 cctctgagtt tttgatacct cagattttaa ggcc

• This sequence contains 17 repeats of the string
atag.

• Is this a chance pattern or significant?
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Patterns: real or spurious

• In the last 27 presidential elections (all since
1900) Missouri has voted for the winner on 25
occasions, that is 92.6%.

• Is this just a chance occurrence or is something
unusual going on?

• Is Missouri able to predict the outcome better
than chance?
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Patterns: real or spurious

• Rabbi Weissmandel looked at equidistant letter
sequences (ELSs) in the Hebrew text of the
Bible.

• Witztum, Rips and Rosenberg discovered ELSs
that encoded ‘prophesies’ of current events.

• Their paper in Statistical Science claimed that the
probability of such patterns occurring by chance
was 1 in 60000.

• So is the book of Genesis really prophetic?
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Patterns: real or spurious

• Many scientific papers back up their claims by
quoting significance levels for results based on a
statistical analysis.

• The significance indicates the fraction of papers
for which such results fail to hold by chance.

• But all researchers have many projects/papers
that they plan to publish, but which fail because
the results don’t appear significant.

• It would therefore appear that the submitted
papers are a sample selected based on the
significance of their findings, hence invalidating
the significance calculations – does this undermine
their validity?
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Pattern analysis in science

• The last example highlights core role of
the statistics of pattern analysis in scientific
research.

• It also suggests that not always completely
rigorous in the way in which inferences are made.

• Tutorial aims to revisit statistical inference
underpinnings of how research is assessed and
to question whether recent developments might
not point to new approaches.

• For example Wolfram suggests we should
create theories from short programs – such an
approach may be rendered more feasible with a
statistical learning style of analysis.
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Significance vs stability
• Traditionally statisticians have applied significance

tests to infer results:

– the test assumes that the sought result does
not hold: the so-called null hypothesis

– It then works out the probability of data like that
observed occurring based on this assumption

– if this probability is sufficiently small the null
hypothesis is refuted and the result proven.

• In Machine Learning statistical learning theory
has been interested in the stability of patterns

– Interesting patterns are sought in the sample
driven by particular analysis

– what is the probability that these patterns are
specific to this sample and will not recur in new
data?
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Significance vs stability

• We will seek to draw parallels between the two
approaches:

– underlying aims of inference are common
– Similar measures arise in the two cases
– Scientific status of the assertions is analogous
– Multi-hypothesis parallel of multi-pattern

• But we also want to contrast the two:

– how can we verify the assumptions each
makes?

– How do they differ in the way in which they
derive new scientific insights?

– What are the advantages/difficulties associated
with each?
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Theories of pattern analysis

• Basic approach to view pattern analysis from a
statistical viewpoint.

• Aim of any theory is to model real/ artificial
phenomena so that we can better understand/
predict/ exploit them.
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General statistical considerations

• Statistical models usually begin with an assumption
that the data is generated by an underlying
distribution P that may only be partially known
to the learner.

• If we are trying to classify cancerous tissue, there
are two distributions, one for cancerous cells and
one for healthy ones, but we may only know that
the samples are drawn independently from these
distributions.

• If we want to test for the significance of frequent
substrings in DNA, we may make assumptions
about the way DNA is generated, for example
base pairs are generated independently at
random.
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Significance testing

• For significance testing the assumptions encode
the null hypothesis that the experiment hopes to
refute.

• Usually the distribution subsumes the processes
of the natural/artificial world that we are studying.

• Rather than accessing the distribution directly,
statistics often works with a P generated ‘training
sample’ or ‘training set’ X typically with a number
of components

X = {x1, . . . , xm}

• Significance testing assesses the likelihood that
‘such data’ arises given the null hypothesis.
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Spurious versus real patterns

• Since we are only assessing significance/stability
based on a random sample, we can only make
probabilistic assertions.

• We might be very unlucky with the sample and
be misled.

• For example if we hypothesise that most cars
are sports cars, and observe a random sample
driving along a road, by chance half might be
sports cars.

• Clearly, the bigger the sample and the stronger
the hypothesis (e.g. 90% of cars are sports cars),
the less likely we are of being misled.
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Summary

• Motivation of statistical analysis: assessing if
patterns are chance or not.

• Examples illustrate the range of data and
fundamental role in scientific research.

• Two styles of analysis: significance testing vs
assessing stability

• Perhaps a moment to reassess how we verify
scientific results to verify we’re making the best
and right use of the data and check we’re not
missing a new trick.
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Significance testing

• For significance testing the probability of being
misled is known as the p-value:

p = P (π(X) ≥ π(X))

where π(X) is some measure of ‘strength’ of the
pattern π also known as a pattern function:

π : X 7−→ R

• Note the probability is over an independent
random sample X and so p is the probability that
we get at least as strong a pattern as observed.

Analysis of Patterns School, Cagliari, September 2009 16



Example of significance testing
• Recall the state of Missouri has voted for the

winner 25 our of the last 27 USA presidential
elections (since 1900) – strange or not?

• Let’s build a model of the probabilities and test
for significance.

• Data is binary vector for each state counting
number of winning votes of the n = 27 elections

X = (x1, . . . , xn) ∈ {0, 1}n

• Our pattern function counts fraction of winning
votes:

π(XMissouri) =
1
n

n∑

i=1

xi =
25
27

= 0.926
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Missouri example cont• We now need to specify the null hypothesis as
the default probability distribution:

• We assume a Bernouilli probability distribution
randomly deciding to vote for the winner with
probability q = 0.734, since this is the average
no of votes for the winner over all states. So

p = P (π(X) ≥ π(X))

=
27∑

i=25

P

(
π(X) =

i

n

)

=
27∑

i=25

(
n

i

)
0.734i(1− 0.734)n−i

= 0.014
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Significance level

• Normally a threshold δ is specified before the test
is made and the null hypothesis is rejected if p <
δ.

• Typical levels for scientific tests are 5%, 2% or
1%: this effectively specifies the level of mistakes
we are prepared to tolerate.

• The Missouri results appear to be prophetic at
the 2% significance level.

• More precisely the chances of Missouri getting
it right that often is less than 2% if we assume
all states equally prophetic and independence of
results.
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Pattern stability

• The aim of pattern stability analysis is to make
predictions about future pattern strengths.

• If we observe a certain pattern strength and
make perhaps milder assumptions about the
distribution, can we infer its expected strength in
a new sample.

• Naturally we again have the caveat that we may
have been misled.

• For example if we observe the fraction of sports
cars over a short period we may wish to conclude
a likely lower bound on their real frequency.
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Pattern stability

• The strength π of a pattern π is best measured
by its expected value over a randomly generated
sample:

π = E[π(X)]

• Given an observation, we would like to give an
interval within which π must fall unless we have
been badly misled.

• Since we are only assessing stability based on
a random sample, again we can only make
probabilistic assertions.

• For example if we hypothesise that the true mean
is close to that of the sample it could be a very
unrepresentative sample.
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Missouri example
• We can relax the assumption about knowing a

state’s probability of voting for the winner.

• Now we seek the interval within which Missouri’s
probability will fall with high confidence.

• If we specify the confidence δ = 0.05, then what
we seek are the Bernouilli probabilities θ such
that the null hypothesis would not be rejected,
that is

27∑

i=25

(
n

i

)
θi(1− θ)n−i ≥ 0.05

• Since θ = 0.785 makes the above an equality,
and θ = 1 satisfies the inequality the interval is
[0.785, 1]
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Missouri stability

• We conclude that with confidence at least 1−δ =
0.95 the expected probability with which Missouri
picks the winning state is at least 0.785 – again
making the assumptions that the decisions are
independent Bernouilli variables.
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Concentration inequalities

• Statistical Learning is concerned with the
reliability or stability of inferences made from a
random sample.

• Random variables with this property have been
a subject of ongoing interest to probabilists and
statisticians.

• For a random variable this corresponds to the
distribution clustering tightly around its mean,
referred to as concentration.

• For concentrated variables the mean gives with
high probability a good estimate of a random
draw.
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Error distribution: dataset size: 342
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Concentration inequalities cont.

• As an example consider the mean of a sample of
m 1-dimensional random variables X1, . . . , Xm:

Sm =
1
m

m∑

i=1

Xi.

• Hoeffding’s inequality states that if Xi ∈ [ai, bi]

P{|Sm − E[Sm]| ≥ ε} ≤ 2 exp
(
− 2m2ε2∑m

i=1(bi − ai)2

)

Note how the probability falls off exponentially
with the distance from the mean and with the
number of variables.
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McDiarmid’s inequality
Theorem 1. Let X1, . . . , Xn be independent random
variables taking values in a set A, and assume that
f : An → R satisfies

sup
x1,...,xn,x̂i∈A

|f(x1, . . . , xn)− f(x1, . . . , x̂i, xi+1, . . . , xn)| ≤ ci,

for 1 ≤ i ≤ n. Then for all ε > 0,

P {f (X1, . . . , Xn)− Ef (X1, . . . , Xn) ≥ ε} ≤ exp
( −2ε2∑n

i=1 c2
i

)

• Hoeffding is a special case when f(x1, . . . , xn) =
Sn
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Using McDiarmid

• By setting the right hand side equal to δ, we can
always invert McDiarmid to get a high confidence
bound: with probability at least 1− δ

f (X1, . . . , Xn) < Ef (X1, . . . , Xn) +

√∑n
i=1 c2

i

2
log

1
δ

• If ci = c/n for each i this reduces to

f (X1, . . . , Xn) < Ef (X1, . . . , Xn) +

√
c2

2n
log

1
δ

Analysis of Patterns School, Cagliari, September 2009 28



Application to Missouri

• Replacing one election can only change the rate
of success by ci = 1/n, so with probability at
least 1− δ

π(X) ≥ E[π(X)] +

√
1
2n

log
1
δ

⇒ E[π(X)] ≥ 0.764

if δ = 0.05

• Note this is wider interval than [0.785, 1] obtained
before – but then did exact computation. In
general won’t be able to do this.
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Summary

• Considered pattern significance testing and
contrasted with pattern stability.

• In case of stability introduced concentration
inequalities as a useful theoretical tool.

• Simple examples seem to suggest that Missouri
is prophetic? Need to move to multiple
hypothesis testing to see why this isn’t the case.
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Missouri revisited

• There has been an underlying flaw in our
discussions about Missouri: it was selected
precisely because it had such a good prediction
record.

• This choice biases any calculations since in a
sample of 45 states (in the union since 1900),
it is much more likely to observe one that has a
good hit rate just by chance.

• To be fair since we have no a priori reason to
expect one state to be better than another, we
should consider one pattern function for each
state:

π1, . . . , π45

and test for each.
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Multiple hypotheses

• We need to downweight the probability of being
misled.

• Recall that significance is probability that ‘such
data’ could have arisen by chance.

• Now we have several ways that significance
might arise:

p = P (∃i ∈ {1, . . . , 45} : πi(X) ≥ πi(X))

• So the misleading Xs are those that cause any
of the inequalities to hold.
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In Picture

pi1

pi45

. . . .

• Must ensure that total probability is less than δ.

• There may be overlaps but union bound ignores
these by taking sum of probabilities.
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Missouri

• If we make each less than δ/45 then total
probability less than δ

• So to achieve significance at 0.05 need value c of
πi(X) such that

for δ = 0.05, P (πi(X) ≥ c) ≤ δ/45 = 0.0019

P (πi(X) ≥ 26/27) = 0.0026

P (πi(X) ≥ 27/27) = 0.0002

• So the value is c = 27/27.

• Hence c = 0.926 is not significant.

Analysis of Patterns School, Cagliari, September 2009 35



Bonferroni correction

• The adjustment of δ → δ/|Π| for performing
significance tests over a set Π of patterns is
known as the Bonferroni correction.

• The correction doesn’t have to be uniform: can
use δ → δqi for pattern i provided

∑

i∈Π

qi ≤ 1

• The choice of qi encodes our prior belief about
which patterns are more likely to occur.

• We chose the uniform correction as we have no
reason to expect one state to be more predictive
than another.
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Tandem repeats example

• Recall that there was a repeat of a length 4 string
17 times.

• If we consider all strings of length 2 to 4, there
are 44 + 43 + 42 = 336 strings.

• Hence, δ → δ/336, and since

p = P (∃π ∈ Π : π(X) > 12) < 0.01

the tandem repeats are significant at the 1% level
assuming iid generation.
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Tandem repeats example

• In reality we may not know the length of the
strings that might turn out to be significant, but
choosing a uniform division of δ cuts the value
for small strings too much.

• Natural to stratify the division by the length: give
δ/2` to strings of length ` and then subdivide this
uniformly over the strings of length `.

• Corresponds to δ → δ(π) = δ/(2|Σ|)`π where Σ
is the alphabet and `π the length of pattern π.

• This encodes a prior belief that the frequent
strings will not be very long.
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Stratification

• Following the capacity functional notation, if
we specify an upper bound on the capacity
functional, i.e. a lower bound on the length of
the string, and then maximise the strength:

max
π

π(X)

s.t. S(π) ≥ Smin

the solution will always have length Smin so no
need to stratify δ.

• But need to choose Smin ahead of time, or do
multiple tests over the different values.
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Linking with algorithms

• Consider the algorithm that places all of the
substrings of a given length at the root of a trie
(each node’s children indexed by the alphabet Σ).

• the strings are progressively moved down the
tree into the branch indexed by their next
character.

• any node with no strings is not created.

• Counts at the leaves (at depth Smin) reveal the
frequent strings.
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Optimising the algorithm

• We can precompute the count required at a leaf
to ensure significance.

• Any internal nodes having fewer than this number
of substrings reaching them can be pruned.

• We can also view the division of δ as happening
as we traverse the tree.

• This gives a natural way to consider different
divisions depending on whether we want to test
for significance at the internal nodes, etc.

• There does not appear to be a simple way to take
into account the overlap between bad events.
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Composite hypothesis testing

• In some cases, the null hypothesis is not defined
exactly as a single probability density P , but
rather as a set P of densities

• Composite hypothesis test: A hypothesis test
with significance level δ is called conservative
with respect to a composite null hypothesis P, if
it satisfies:

∀P ∈ P, P (π(X) ≥ tδ) ≤ δ.

I.e. for each of the probability distributions P ∈ P,
rejecting the null hypothesis while it holds true is
at most equal to the significance level δ.
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Symmetric Composite hypotheses

• Often, the null hypothesis is defined in terms of
symmetries

• The prophetic state: We can assume as a null
hypothesis that permutations of the votes among
the states (within each year) are equally likely:

P (X) = P (T (X))

where T ∈ T, here the set of permutations of the
votes over the states (for each year separately).
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Symmetric hypothesis testing

• Given that the null hypothesis is defined in terms
of transformation invariants T ∈ T, the p-value
can be computed as:

p =
|T ∈ T : π (T (X)) ≥ π (X)|

|T| ,

the proportion of transformations T for which
π (T (X)) ≥ π (X)

• As if generating new random data T (X) from
the data X, drawn from the same (only partially
specified) distribution P

• In practice, only a randomly sampled subset from
T is used... (computational reasons)
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The DNA example

• Tandem repeats in ‘junk’-DNA: Assuming the
DNA is really junk, it makes sense to assume
all sequence permutations are equally likely: the
null hypothesis.

• Check this by permuting 10,000 times and
computing the pattern strength on each permuted
string. The p-value = the proportion of times that
π (T (X)) ≥ 17,

• here < 1
10,000.
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Multi-patterns for pattern stability

• We have seen how testing multiple hypotheses
leads to the Bonferroni correction based on the
union bound.

• If we have a finite set of pattern functions we
can apply exactly the same idea to bound the
probability that the estimates of the means of
each lie in a set of intervals.

• In this context this is known as uniform
convergence, since we effectively ask that we
have statistical convergence uniformly over all of
the patterns.
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Probability of being misled in
classification

• Basic approach is again to bound the probability
of being misled and set this equal to δ – take
classification example.

• What is the chance of being misled by a single
bad function f , i.e. training error errS(f) = 0,
while true error is bad err(f) > ε?

PS {errS(f) = 0, err(f) > ε} = (1− err(f))m

≤ (1− ε)m

≤ exp(−εm).

so that choosing ε = ln(1/t)/m ensures
probability less than t.
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Finite or Countable function classes
If we now consider a function class

F = {f1, f2, . . . , fn, . . .}

and make the probability of being misled by fn less
than qnδ with

∞∑
n=1

qn ≤ 1,

then the probability of being misled by one of the
functions is bounded by

PS

{
∃fn: errS(fn) = 0, err(fn) >

1
m

ln
(

1
qnδ

)}
≤ δ.

This again uses the union bound.
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Finite or Countable function classes
result

• The bound translates into a theorem: given F

and q, with probability at least 1− δ over random
m samples the generalisation error of a function
fn ∈ F with zero training error is bounded by

err(fn) ≤ 1
m

(
ln

(
1
qn

)
+ ln

(
1
δ

))

• We can think of the term ln
(

1
qn

)
as the

complexity / description length of the function fn.
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Some comments on the result

• Note that we must put a prior weight on the
functions. If the functions are drawn at random
according to a distribution pn, the expected
generalisation will be minimal if we choose our
prior q = p.

• Interestingly if true distribution with which
classifiers arise is p then using q makes the
average bound worse by

1
m

KL(p‖q).

• This is the starting point of the PAC-Bayes
analysis.
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Statistical learning theory

• SLT has developed methods of proving uniform
convergence over sets that have uncountably
many elements where the union bound must fail.

• Hence, the techniques take into account the
overlap between different patterns in order to
beat the union bound.

• Earliest technique used the VC dimension,
but more refined methods are based on
Rademacher complexity.

Analysis of Patterns School, Cagliari, September 2009 53



STRUCTURE

1. Spurious versus real patterns

2. Pattern significance versus pattern stability

3. Multiple hypothesis testing and the Bonferroni
correction

4. Composite hypothesis testing and permutation
tests

5. Pattern stability and uniform convergence

6. Rademacher complexity

7. Conclusions

Analysis of Patterns School, Cagliari, September 2009 54



Rademacher complexity

• Rademacher complexity measures the complexity
of a function class by asking how well it can
correlate with noise:

Rm(F) = ESσ

[
sup
f∈F

2
m

m∑

i=1

σif (zi)

]
.

is known as the Rademacher complexity of the
function class F, where σi are uniformly random
±1 variables and expectation is also over random
iid sample S.
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Rademacher proof beginnings
For a fixed f ∈ F we have

E [f(z)] ≤ Ê [f(z)] + sup
h∈F

(
E[h]− Ê[h]

)
.

where F is a class of functions mapping from Z to
[0, 1] and Ê denotes the sample average.

We must bound the size of the second term. First
apply McDiarmid’s inequality to obtain (ci = 1/m for
all i) with probability at least 1− δ:

sup
h∈F

(
E[h]− Ê[h]

)
≤ ES

[
sup
h∈F

(
E[h]− Ê[h]

)]
+

√
ln(1/δ)

2m
.
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Deriving double sample result

• We can now move to the ghost sample by simply
observing that E[h] = ES̃

[
Ê[h]

]
:

ES

[
sup
h∈F

(
E[h]− Ê[h]

)]
=

ES

[
sup
h∈F

ES̃

[
1
m

m∑

i=1

h(z̃i)− 1
m

m∑

i=1

h(zi)

∣∣∣∣∣S

]]
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Deriving double sample result cont.

Since the sup of an expectation is less than or
equal to the expectation of the sup (we can make
the choice to optimise for each S̃) we have

ES

[
sup
h∈F

(
E[h]− Ê[h]

)]
≤

ESES̃

[
sup
h∈F

1
m

m∑

i=1

(h(z̃i)− h(zi))

]
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Adding symmetrisation
Here symmetrisation is again just swapping
corresponding elements – but we can write this as
multiplication by a variable σi which takes values±1
with equal probability:

ES

[
sup
h∈F

(
E[h]− Ê[h]

)]
≤

≤ EσSS̃

[
sup
h∈F

1
m

m∑

i=1

σi (h(z̃i)− h(zi))

]

≤ 2EσS

[
sup
h∈F

1
m

m∑

i=1

σih(zi)

]

= Rm (F) ,
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Main Rademacher theorem
Putting the pieces together gives the main theorem
of Rademacher complexity: with probability at least
1− δ over random samples S of size m, every f ∈ F

satisfies

E [f(z)] ≤ Ê [f(z)] + Rm(F) +

√
ln(1/δ)

2m

• Note that Rademacher complexity gives the
expected value of the maximal correlation with
random noise – a very natural measure of
capacity.

• Note that the Rademacher complexity is distribution
dependent since it involves an expectation over
the choice of sample – this might seem hard to
compute.
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Empirical Rademacher theorem

• Since the empirical Rademacher complexity

R̂m(F) = Eσ

[
sup
f∈F

2
m

m∑

i=1

σif (zi)

∣∣∣∣∣ z1, . . . , zm

]

is concentrated, we can make a further
application of McDiarmid to obtain with probability
at least 1− δ

ED [f(z)] ≤ Ê [f(z)] + R̂m(F) + 3

√
ln(2/δ)

2m
.

• For class FB of linear functions with norm B we
can bound RC:
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Rademacher complexity of FBThe following derivation gives the result

R̂m(FB) = Eσ

[
sup

f∈FB

2
m

m∑

i=1

σif (xi)

]

= Eσ

[
sup

‖w‖≤B

〈
w,

2
m

m∑

i=1

σiφ (xi)

〉]

≤ 2B

m
Eσ

[∥∥∥∥∥
m∑

i=1

σiφ(xi)

∥∥∥∥∥

]

=
2B

m
Eσ







〈
m∑

i=1

σiφ(xi),
m∑

j=1

σjφ(xj)

〉


1/2



≤ 2B

m


Eσ




m∑

i,j=1

σiσjκ(xi,xj)







1/2

=
2B

m

√√√√
m∑

i=1

κ(xi,xi)
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SVM bound
• Assembling the result we obtain that with

probability at least 1 − δ over the generation of
the training data:

P (y 6= sgn(g(x))) = E [H(−yg(x))]

≤ 1
mγ

m∑

i=1

ξi +
4

mγ

√√√√
m∑

i=1

κ(xi,xi) + 3

√
ln(2/δ)

2m

• Note that for the Gaussian kernel this reduces to

P (y 6= sgn(g(x))) ≤ 1
mγ

m∑

i=1

ξi +
4√
mγ

+ 3

√
ln(2/δ)

2m

Analysis of Patterns School, Cagliari, September 2009 64



Kernel PCA

• the projection of a new point into the space
spanned by the i-th eigenvector of the correlation
matrix

C(S) =
1
m

m∑

i=1

φ(xi)φ(xi)′

of a sample S can be computed as

Pui
(φ(x)) = λ̂

−1/2
i

m∑

j=1

vijκ(x,xj),

where (vij)m
j=1, λ̂i are the i-th eigenvector and

eigenvalue of the kernel matrix K(S).
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Kernel PCA cont.

• Hence we can perform PCA in a kernel defined
feature space in the orthonormal basis given by
the eigen-vectors of C(S).

• PCA standard technique applied for low dimensional
feature spaces – no guarantee that it is always
sensible to use the approach in the high-
dimensional feature spaces typical of kernel
methods.
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Analysis of Kernel PCA

• SLT should be able to highlight the critical
elements which affect the quality of the kernel
PCA.

• Consider performing PCA on a randomly drawn
training set S of size m in the feature space
defined by a kernel κ(x, z) and project new
data onto the space V̂ spanned by the first k
eigenvectors
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Statistical analysis of PCA

• with probability greater than 1 − δ over the
generation of the sample S the expected squared
residual is bounded by

E
[‖P⊥

V̂
(φ(x))‖2] ≤ 1

m

m∑

i=k+1

λ̂i(S)

+
1 +

√
k√

m

√√√√ 2
m

m∑

i=1

κ(xi,xi)2 + R2

√
18
m

ln
(

2
δ

)
,

where the support of the distribution is in a ball
of radius R in the feature space.
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Outline of proof

• Let X = UΣV ′ be the singular value
decomposition of the sample matrix X in the
feature space. The projection norm is then given
by

f̂(x) = ‖PV̂ (φ(x))‖2 = φ(x)′UkU
′
kφ(x),

where Uk is the matrix containing the first k
columns of U .
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Outline of proof

• Hence we can write

‖PV̂ (φ(x))‖2 =
NF∑

ij=1

wijφ(x)iφ(x)j =
NF∑

ij=1

wijφ̂(x)ij,

where φ̂ is the projection mapping into the feature
space F̂ consisting of all pairs of F features and
wij = (UkU

′
k)ij.
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Feature space construction

• The standard polynomial construction gives

κ̂(x, z) = κ(x, z)2 =




NF∑

i=1

φ(x)iφ(z)i




2

=
NF∑

i,j=1

φ(x)iφ(z)iφ(x)jφ(z)j

=
〈
φ̂(x), φ̂(z)

〉
F̂

.

Analysis of Patterns School, Cagliari, September 2009 71



Feature space construction cont.

• The norm of f̂ satisfies (note that ‖ · ‖F denotes
the Frobenius norm)

‖f̂‖2 =
NF∑

i,j=1

α2
ij = ‖UkU

′
k‖2F

=

〈
k∑

i=1

uiu′i,
k∑

j=1

uju′j

〉

F

=
k∑

i,j=1

(u′iuj)2 = k
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Applying Rademacher complexity

• We consider the function class F̂√k with respect
to the kernel

κ̂(x, z) = κ(x, z)2,

augmenting the corresponding primal weight
vectors with one further dimension while augmenting
the corresponding input vectors with a feature

‖φ(x))‖2k−0.25 = κ(x,x)k−0.25 = k−0.25
√

κ̂(x,x)

= ‖φ̂(x))‖k−0.25
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Applying Rademacher complexity cont.

• We now apply the Rademacher theorem to the
class

F̂ =
{

f` : (φ̂(x), ‖φ̂(x))‖k−0.25)

7→ (‖φ̂(x))‖ − f(φ̂(x)))R−2 | f ∈ F̂√k ∩ P
}

⊆ R−2F̂′√
k+
√

k
,
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Hypothesis testing using kernel spaces
• Work by Gretton et al. for testing if two sets of

data are drawn from different distributions.

• Consider a kernel defined function space:

F = {x 7→ 〈w, φ(x)〉 : ‖w‖ ≤ 1}

• Define maximum discrepancy pattern function
over two equal sized samples S and S̃:

m(S, S̃) = sup
f∈F

(
ÊS[f ]− ÊS̃[f ]

)

• Note that we can define a test for each f ∈ F,
so this can be viewed as a multiple test over
infinitely many hypotheses.
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Composite hypothesis and permutation
testing

• Null hypothesis is that two samples are drawn
i.i.d. from the same distribution:

• i.e. the composite hypothesis test – data
generated i.i.d. from any (fixed) distribution with
support in the unit ball.

• Hence, can use permutation testing since all
permutations of the data are equally likely

• actually use the same swapping permutations
specified by the Rademacher variables to
estimate expected value:

Eσ[m(S, S̃)] = Eσ

[
sup
f∈F

(
1
m

m∑

i=1

σi(f(xi)− f(x̃i))

)]
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Bounding expected value

• Hence, we have

ESS̃Eσ[m(S, S̃)] ≤ 2EσS

[
sup
f∈F

(
1
m

m∑

i=1

σif(xi)

)]

≤ 2
m

√
Tr(KS)

• Applying McDiarmid to bound the probability that
we are far from the mean over S, S̃, we have with
probability at least 1− δ

m(S, S̃) ≤ 2
m

√
Tr(KS) +

√
2
m

log
1
δ
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Applying the test
• need to compute m(S, S̃) on the two samples:

m(S, S̃) =
1
m

sup
w:‖w‖≤1

m∑

i=1

(〈w, φ(xi)〉 − 〈w, φ(x̃i)〉)

=
1
m

sup
w:‖w‖≤1

〈
w,

m∑

i=1

(φ(xi)− φ(x̃i))

〉

=
1
m

∥∥∥∥∥
m∑

i=1

(φ(xi)− φ(x̃i))

∥∥∥∥∥ =
1
m

√
y′KSS̃y

where y is the vector with 1s for S and −1s for S̃

• Hence, test for significance at level δ is:

√
y′KSS̃y > 2

√
Tr(KS) +

√
2m log

1
δ
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Conclusions

• Statistical analysis of patterns seen as crucial in
assessing if real or spurious.

• General framework includes both significance
testing and stability analysis.

• Multiple hypothesis testing can be effected using
the Bonferroni correction based on the union
bound.

• Methods from SLT can also be used in
hypothesis testing.

• Example given of detecting if two data samples
are drawn from different distributions.
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