

Bridge safety assessment and maintenance with the use of monitoring techniques

Marian Ralbovsky, AIT, Austria

Application of monitoring techniques

- Safety assessment
 - Determination of stress
 - Fatigue damage accumulation
 - Model updating
- Extension of bridge service life
 - Deterioration monitoring
 - Early warning systems

Determination of stress

- Intended use: to correct design assumptions
- Technique
 - for dead load stresses: Elastomagnetic method
 - Limited to external tendons or cables
 - Alternative to vibrational method
 - Insensitive to boundary conditions
 - Already being used in NMS

- for traffic load stresses (using load models): Soft load testing
- Possible benefit: real stress may be lower than calculated

Fatigue damage accumulation

- Intended use: to measure stress cycles on bridge with relevant fatigue failure (e.g. steel railway bridges)
- Technique
 - Strain measurements \rightarrow converted to stresses
 - cheap foil-type gauges are sufficient
 - Stress cycle counting by rainflow method

Fatigue damage accumulation

- Technique (continued)
 - Calculation of damage accumulation in monitored period (Palmgreen-Miner rule)

$$d_t = \sum_{i=1}^m \frac{n_{\Delta\sigma,i}}{N_{\Delta\sigma,i}}$$

Extrapolation in time \rightarrow remaining lifetime of measured structural ____ detail

$$t_{rem} = \frac{t}{d_t} - t_{past}$$

Possible benefit: real damage accumulation may be lower than expected

Model updating

- Use: to detect structural changes by adapting a model to measurements (damage localization and quantification)
- Technique
 - measurement of structural properties (eigenfrequencies, mode shapes, change of strain and inclination)
 - accuracy evaluation

Model updating

- Technique (continued)
 - Model optimization by updating selected model parameters
 - Result may deviate from real damage due to measurement accuracy

- Possible benefit
 - Provides hints of damage locations, to be verified by inspection
 - Without verification: use of results not recommended for capacity assessment

Deterioration monitoring

- Intended use: to observe deterioration development
- Technique
 - Crack width, strain increase, stress, relative displacements measurements on problematic locations
 - Limit values defined by structural analysis
 - Detection of active cracking by acoustic emission (AE)
- Possible benefit: extension of service life of bridges with known deterioration problems
 - Measurements also applicable during load tests

Acoustic Emission (AE)

- Principle: detection of transient elastic waves produced by
 - Micro and macro crack formation in concrete
 - Concrete crushing
 - Crack surface rubbing
 - De-bonding of steel rebars or their plastic deformation
- Evaluation parameters
 - Acoustic event rate
 - Local concentration of cracking
 - Stress at start of AE activity, AE activity during unloading
 - NDIS criterion
 - Felicity ratio, Kaiser effect

Cumulative event count

- Event rate
 - large increase near failure state

- Barcza bridge load test
 - AE detected increased cracking before cracks were visible
 - Strain-load diagram remained linear even after cracks were visible

Time

RCHES

FEHRL

Critically

active

source

Active

source

Inactive source

- Local concentration of cracking activities
 - Indicator of growing damage
 - Tests at concrete specimens

- Stress at start of AE activity
 - Low stress \rightarrow poor structure
- AE activity during unloading
 - High activity \rightarrow high damage levels

- NDIS criterion
 - Calm vs. Load ratio
 - Calm ratio: ratio of AE event count in unloading phase
 - Load ratio: load level relative to maximum load
 - Complete unloading necessary
- Tests on old bridge girders

• Felicity ratio

 $Felicity Ratio = \frac{Load at which significant emission restarts}{Previously applied maximum load}$

- Decreasing felicity ratio \rightarrow growing damage
- Effect observed in tests with old bridge girders
- Kaiser effect
 - Felicity ratio ≥ 1
 - Used to determine maximal previous loading
 - Effect is temporary in concrete
 - Effect observed in concrete specimen tests

AE benefits

- Detects cracking earlier than other monitoring methods
- Detects near-failure state → especially suitable for proof load tests
- Detects growing of damage

Early warning systems

- Use: to detect starting damage of unknown location
- Application on: bridges of special importance
- Technique:
 - Design of continuous monitoring system based on

Early warning systems

- Technique (continued):
 - Normalization of measured data
 - Improves accuracy
 - Damage detection using data mining techniques
- Rail bridge in France
 - Clustering techniques applied on eigenfrequency measurements
 - Hierarchy-divisive technique showed best results

Early warning systems

- Testing damage detection ability by simulation
 - Statistical analysis considering accuracy of measurements
 - Testing damage detection ability of probable damage scenarios
 - Bridge Reichsbrücke, Vienna

E_c reduction	Identifiable?
10 %	No
25 %	Relatively well
50 %	Yes

- Benefit: early damage detection allows quick maintenance response
 - Expected detection abilities: cracks in concrete, loosening of connections

Φ

RCHES

FEHRL

Normal

Testina

 $\beta_c = 3.5$

 $V_{R} = 10\%$

Capacity reduction factor by visual inspection

Method used in Slovenia compared to method by Moses&Verma (1987)

Rating factor:

$$RF = \frac{\Phi \times R_d - \gamma_G \times G_n}{\gamma_Q \times Q_n}$$

Capacity reduction factor by visual inspection

• Both methods applied on Koszalin Bridge

- Identical result from both methods: $\Phi = 0.8$
- Method used in Slovenia can be recommended for other NMS as well