

Load test results Internet data base – a new tool in bridge assessment

Piotr Olaszek

Road and Bridge Research Institute Warsaw, Poland

RCHES

27-28 August 2009 LJUBLJANA Internet database of load test results and analytical calculations

- 1. Introduction
- 2. Internet Software Application
- 3. The Data Base Analysis
- 4. Conclusions

Introduction

- Many European countries perform load tests on new and rehabilitated bridges.
- The information about load test results could be used to optimize assessment of existing bridges.
- The database will allow the end users, to judge quickly the behavior of the structure under the loading and suggest the structural assessment method to be used computation analysis or load testing.

SPENS & ARCHES FINAL SEMINAR

Application - The data format

The data are organized with the use of sheets The data set (one record of the database) contains of 4 parts:

• Bridge description

- Bridge description sheet
- Bridge schemes & photos sheet
- Analytical model description
 - Analytical model description sheet
- Load testing description
 - Load testing description sheet
 - Static Loading-Results sheet
 - Dynamic Loading-Results sheet
- Comparison of the load test results and analytical calculations
 - Static Loading-Comparison sheet
 - Dynamic Loading-Comparison sheet

Application - Review the data Data - Bridge description sheet

Bridge symbol: IKE	Aw				
Model 😴 Test	Static result	Static compare	🗱 Dynamic result	Dynamic compare	ध्रि Guide
					Help
2006					
2006					
tiple	-				
	•				
ost-tensioned concrete					
	Model Test	Model Test Static result 2006 2006 iple	Model Test Static result Static compare	Model Test 2006 2006 2006 iple iple	Model Test Static result Static compare Dynamic result Dynamic compare

General information about the bridge – bridge design & material

SPENS & ARCHES FINAL SEMINAR

Application - Review the data Data - Bridge description sheet

< < >> User: IBDIM Bridge code: 6 Bridge symbol: IKEAw	v	Search	
🗰 Bridge 🗱 Scheme 🗰 Model 👹 Test 🛊	🗰 Static result 🛛 🐗 Static compare 🛛 🐔	Dynamic result 💭 Dynamic compare 💭 Guide	
Structure Length Length of the of roadway which is supported on the independent static scheme bridge structure	117.0 [m]		-
Number and Length of Spans Number of spans in the independent static scheme bridge structure: one span or continuous spans	4		
Length of spans 29.4 37.8 29.4	21.0		-
Deck width The out-to-out width; in the case of the variable	11.8 [m]	Check sum of the width	-
width input mean value Number of separate roadways	1	The difference	

General information about the bridge – bridge dimensions

SPENS & ARCHES FINAL SEMINAR

Application - Review the data Data - The bridge schemes & photos sheet

The longitudinal scheme of the bridge

Application - Review the data Data - The bridge schemes & photos sheet

The photo of the bridge

Application - Review the data Data - Analytical model description sheet

Bridge Scheme	Model	Test 1	Static result	Static compare	Dynamic result	Dynamic compare	र्द्धे Guide
NALYTICAL MODEL	DESCRIP	TION					Help
Flat					Finite Element Metho	d	
Three-Dimentional					Displacement Method	i	
Other					Other		
Slab Girder	•						
dditional information							
The short non-obligatory a	dditional inforr	mation					
Analytical model: grid shap	e.						

The general information about the analytical calculations method

Application - Review the data Data - Load testing description sheet

<< >> User: IBDIM	Search
Bridge code: 6 Bridge symbol: IKEAw	
🗰 Bridge 🗱 Scheme 🗰 Model 👹 Test 🗰 Static result 🛊	Static compare 💭 Dynamic result 💭 Dynamic compare 💭 Guide
LOAD TESTING DESCRIPTION	Help
Type of load testing	=
Testing bridge before put into service	
Research testing	
Assessment of load carrying capacity	
Static loading	
Method of loading	
Loaded heavy goods vehicles	
Maximal number of the vehicles (during all loading variants)	6
The average weight of the single vehicle [kg]	26443.0
Other text input possible	

The general information about the static and dynamic method of loading

Application - Review the data Data - Load testing description sheet

«	User: IBDIN	1			Search]
ridge code: 6	Bridge symbol: IKEA	N				
🕈 Bridge 🛛 🗱 Scheme 🛛 🗱 M	odel 👹 Test 🕯	Static result	Static compare	💭 Dynamic result	💭 Dynamic compare	💭 Guide
ivestigation range and Measuremer	it methods					
Static						
✓ Deflections						
Strains						
Support displacements						
Other						
Other						
Other						
Other						
Other						
1						
Dynamic						
P Deflections						
Accelerations						
Strains						
Other						
Other						
Other						

The general information about investigation range

Application - Review the data Data - Static Loading-Results sheet

🛱 Bridge 🏾 🎇 Sche	me	*	Mod	el 💭	Test 🗰	Static result	🗰 Stat	tic compare	💭 Dyna	amic result	💭 Dyn	amic comp	pare 💭 Guide
TATIC-LOADING	RE	SUL	TS										Help
inge of measured <mark>q</mark> ua	ntitie	s for	Bridg	je Membe	rs (BM)		Range of ela	stic quantities		Range of p	ermanent		
Quantity		Rat	io R	Range (of ratio R	EM loade	d directly	BM loader	f indirectly	quant BM loade	ities d directly	2	Description of loaded BM
flections	-	Rd	*	0.92	1.00	-19.26	-20.86			-0.57	-0.74	[mm]	deflection distribution at
iffections		Rđ	-	0.93	1.00	-13.85	-14.92			-0.84	-0.98	[mm]	deflection distribution at
flections		Rđ		0.89	1.00	-11.08	-12.42			-0.03	-0.38	[mm]	deflection distribution at
flections	-	Rđ	-	0.00	-0.01	0,05	0,09			-0.08	-0.14	[mm]	deflection distribution at
flections	-	Rd	*	-0.25	-0.37			6.31	7.75			[mm]	deflection distribution at
Rections	Ψ.	Rđ	-	-0.41	-0.47			6.14	7.08			[mm]	deflection distribution at
pport displacements	Ŧ	-	T			-0.65	-0.63					[mm]	range of support displa
pport displacements	-	-	Ŧ			-1.00	-1.38			0.46	0.71	[mm]	range of support displa
	-	-	*										
	-	E	-										
		-											
	-	-											
		-											

The ranges of measured quantities for different bridge members

Application - Review the data Data - Static Loading-Comparison sheet

Bridge Scher	me	-	Mode	1 23	Test 💅	Static result	🗯 Sta	tic compare	🛱 Dynamic resu	It 2 Dynamic compare 2 Guide
STATIC-LOADING	CO te m	MPA easure	RIS ed and	ON d calcula	ted quantit	ies	<u> </u>			Help
		_	_	-			Range of co	mparison factor	's	
Quantity		Ratio	R	Range (of ratio R	BM loaded	easured, ela directly	BM loaded	[%] indirectly	Description of loaded BM
Deflections	~	Rđ	T	0,92	1,00	89	92			deflection distribution a
Defections	-	Rd	*	0,93	1,00	91	95			deflection distribution a
Deflections	~	Rd	-	0,89	1,00	93	100			deflection distribution a
Deflections	-	Rd	-	0,00	-0,01	9	15			deflection distribution a
Deflections	~	Rđ	•	-0,25	-0,37			80	88	deflection distribution a
Deflections	-	Rd	v	-0,41	-0,47			75	84	deflection distribution a
Support displacements	~		-							range of support displa
Support displacements	-	-	-	Ľ.						
-		_	*							
	-		-							
	~	-	-							
			-							

The table with static loading comparison factors

SPENS & ARCHES FINAL SEMINAR

Application - Review the data Data - Static Loading-Comparison sheet

The additional graphic data: the example distribution diagrams of the measured and calculated deflection in longitudinal bridge section

27-28 August 2009 LJUBLJANA

SPENS & ARCHES FINAL SEMINAR

Application - Review the data Data - Dynamic Loading-Results sheet

P BI	lage	Scheme	e Model	W lest	Stauc result	Static compare		2 Dynamic compare	Coulde
lue	s of the	free vibratior	I frequencies	bration frequenci	əs [H7]			Description of tested member	
5	3.8					Ve	rtical vibration, for girder	s and deck.	

The table with values of the free vibration frequencies

Application - Review the data Data - Dynamic Loading-Comparison sheet

Bridge	Sc.	heme 🕻	Model	💭 Test	Static result	Static compare	Dynamic result	C Dynamic compare	Guide
YNAMIC	LOAD	ING - CC	MPARIS	ON					Help
omparison	factors o	f the meas	ured and ca	liculated qua	ntities <mark>(</mark> free vibrat	ion frequency)			L
Ran	ge of comp	arison factor	s (%)				Descriptio	n	
	112.5	125			in vertica	I direction			
	214.2	214.2			in longit	udinal direction			
	93.5	93.5			in latera	direction			

The table with comparison factors of the measured and calculated free vibration frequency

SPENS & ARCHES FINAL SEMINAR

Application - Review the data Data - Dynamic Loading-Comparison sheet

The additional graphic data: The example deflection-time diagram of the measured forced and free vibrations during truck passage with the 50 km/h speed

27-28 August 2009 LJUBLJANA

SPENS & ARCHES FINAL SEMINAR

Application - Analysis of the data

<< <	> >>	Use	r: IBDIM				Sea	rch			
Bridge code: 1	Brid	dge symbo	ol: piotrM1								
Data search							1 🚺 nic o	ompare	💭 Gui	de	
RIDGE DATA SEARCH											
/ears of the bridge built	2000		2008						Н	eib	
'ears of the bridge load te	sting 2000		2008								
Bridge Design				 	Fin	id records					
Multi-beam or grid	er										
🔲 Tee beam			-								
Concrete											
Concrete	ete / Post-tensione	ed concrete	e								
Concrete Steel Prestressed concr iervice on Bridge	ete / Post-tensione	ed concrete	8	 							
Concrete Steel Prestressed concr iervice on Bridge Motor road	rete / Post-tensione	ed concrete	8	 							
Concrete Concrete Steel Prestressed concrete W Motor road Pedestrian	rete / Post-tensione	ed concrete		 							
Concrete Concrete Service on Bridge Wotor road Bicycle	rete / Post-tensione	ed concrete		 							
Concrete Concrete Service on Bridge Motor road Pedestrian Bicycle Xructure Length	rete / Post-tensione	ed concrete	e v	[m]							
Concrete Concrete Service on Bridge Motor road Pedestrian Bicycle Cructure Length	rete / Post-tensione	ed concrete	P V	[m]							
Concrete Concrete Service on Bridge Motor road Pedestrian Bicycle Structure Length lumber of Spans ength of Spans	ete / Post-tensione	ed concrete	e •	[m]							

The window of the selecting criteria to find records

27-28 August 2009 LJUBLJANA

Application - Analysis of the data

<< <	>	>>	13	Use	r: IBDIM									Search	Results
ige code: 10	12		Bridg	je symbo	l: Zalus	ki								Return	
Bridge	Scheme	** M	odel	1 💭 T	est	Static I	esult	🇰 Statio	c col	mpare	💭 Dyna	mic resu	tt 🛫	Dynamic compare	Cide Guide
RIDGE DE	SCRIPTIO	N													Help
rs of the brid	lge built	20	07												
culation resu	ults														
PARISON FA	CTORS OF ME	ASURE	D AN	ID CALCU	LATED O	UANTITIE	s								
		1	Bri	idge men	nbers loa	ded direc	tly.		Brid	ge mem	bers loade	d inderict	ly		
quantity	ratio R	Rang	le of	ratio R	Range	e of comp factors	arison	Range	of	ratio R	Range	of compa factors	irison		
	Rd	1.0	÷	0,74	88	÷	68	-0.35	*	-0.27	75	. #8	60		
Deflection	Rf		÷			÷			÷			÷			
	Rd & Rf		****			÷						. 1 2			
	Rđ	1.0	÷	0.74	92		74		÷			÷			
Strains	Rf		4			÷			÷			+			
	Rd & Rf		5767			÷			ina. Ina.e.e			÷			
			_						-						

The table with analyse of the comparison factors distribution

27-28 August 2009 LJUBLJANA

SPENS & ARCHES FINAL SEMINAR

110 records Czech Republic Croatia Bulgaria France Poland Spain Slovenia

The bridge material distribution

27-28 August 2009 LJUBLJANA

The bridge design distribution

The example bridge photos

27-28 August 2009 LJUBLJANA

The example bridge schemes

The data base analysis - The comparison factor reviews – static loading

The distributions of average comparison factors for bridge elements loaded directly

27-28 August 2009 LJUBLJANA

The database analysis - The comparison factor reviews - static loading

The distributions of average comparison factors for bridge elements loaded indirectly

27-28 August 2009 LJUBLJANA

The database analysis - The comparison factor reviews – static loading

The compatibility of test results and analytical calculation

The assessment process of load carrying capacity based on diagnostic load testing results

An acceptable match is considered to have been reached, when the differences between the site-measured maximum deflections and the analytical values are within the following limits:

+/- 10% for prestressed concrete and metallic bridges +/- 15 % for reinforced concrete and composite bridges.

The database analysis - The comparison factor reviews – static loading

The distribution of comparisons factor with the acceptable match in the function of bridge material

27-28 August 2009 LJUBLJANA

SPENS & ARCHES FINAL SEMINAR

The database analysis - The comparison factor reviews – dynamic loading

The distribution of comparisons factor of calculate and measured free vibration frequency

27-28 August 2009 LJUBLJANA

Conclusions - The database analysis - The comparison factor reviews

- Only 3%-36% (depends on the bridge structural material) of presented in the database comparisons contain loaded bridge member with the acceptable match.
- The majority of analytical models presented in the database requires calibration.
- The hypothetical assessment of bridge load capacity with the use of those models without calibration would have unacceptable error.

Conclusions - Internet data base

- The Internet database of load test results and analytical calculations seems to be useful for the end users, to present quickly the behavior of the structure under the loading and suggest the compatibility range between real bridge behavior and results of the analytical calculations.
- The database, to be more useful should contain more information. The additional information about analytical model (the scheme of bridge analytical model, number of the elements and nodes) seems to be very interesting.
- The suitable for the user would be a full database filling.
- The changes require the database developing and inputting the data into the database directly after the load testing execution.

Thank You for Attention

Piotr Olaszek

E- mail: polaszek@ibdim.edu.pl

The application is available at the Internet address:

http://ambergate.ibdim.edu.pl/arches

User:	wp222
Password:	base

The system requirements:

- Windows XP, VISTA,
- Minimum display resolution: 1024 x 768,
- Microsoft Internet Explorer ver. min 6.0,
- Sun Java system min. v. 1.6 installed & allowed in Internet Explorer Settings.

Next login User: Password:

load testing

