





SPENS Final seminar 27 – 28 August 2009

# Evaluation of materials for road upgrading

# Marjan Tušar - ZAG Ljubljana WP4 leader

Ljubljana, Slovenija





The objective of this research project is to develop appropriate tools and procedures for the rapid and costeffective rehabilitation and maintenance of roads in the EU New Member States (NMS).

The overall objective is to search for materials and technologies for road pavement construction and rehabilitation that would:

- behave satisfactorily in a typical climate,
- have an acceptable environmental impact,
- be easy to incorporate within existing technologies,
- be cost-effective and easy to maintain









- 1. Insufficient information is available on the actual performance of asphalt mixtures with modified bitumen.
- 2. High Modulus Asphalt Mixture is technical solution providing improved durability of road asphalt pavement with possibility to reduce the pavement thickness and road construction costs. Further it requires less maintenance operations, thus giving the reduction of maintenance cost.
- 3. To investigate the effect of different thicknesses of asphalt pavement and strengthening treatments on existing pavements accelerated load test should be performed with Heavy Vehicle Simulator, HVS-Nordic. This cost-effective facility can be used on selected field trial







Objectives - WP4 Evaluation of materials for road upgrading

The main objective of this work package is to evaluate materials and pavement layers appropriate for road upgrading, taking into account the conditions in New Member States.

Modified bitumens as asphalt binders and high modulus asphalt mixtures are more and more popular in road construction, but insufficient information is available on the actual performance of these mixtures. The objectives of this work package are:

- To evaluate the efficiency of the use of different modified bitumens.
- To deepen the knowledge about performance-related laboratory tests by test section evaluation.
- To implement and further develop the technology of High Modulus Asphalt Mixtures in Central and Eastern European Countries.







Objectives - WP4 Evaluation of materials for road upgrading

Further objectives of this work package are:

- To study possible technologies of upgrading low-volume roads to higher bearing capacity and also cost-benefit analyses of different procedures.
- To perform accelerated loading tests in test fields of the New Member States, in order to evaluate the upgrading techniques and new materials.
- To evaluate the behavior of improved materials and pavement structures. Final results are:

Guidelines for different types of performance-related binder tests, as well as recommendations for selecting binder properties for different types of asphalt mixtures based on the results of performance-related binder tests.

Guidelines and the required properties for choice of materials for High Modulus Asphalt Mixtures (binders, aggregates, additives).

Guidelines for selecting the most cost-effective strengthening treatments on asphalt macadam and light asphalt pavements.







# Tasks - WP4 Evaluation of materials for road upgrading

Task 1 Investigation of the Performance of Conventional and Polymer Modified Bitumen

Task 2 Material Recommendations and Performance-based Requirements for High Modulus Asphalt Mixtures and Flexible Pavement Design

Task 3 Upgrading of asphalt macadam and light asphalt pavements to the bearing capacity level needed by EU-regulations





The binders (conventional and modified bitumen) used in the asphalt mixtures were varied to accomplish a large variation in their characteristic properties. The binders were characterized with a range of fundamental test methods as well as traditional test methods and these results were compared and correlated to the results from the asphalt mixture testing program.

The tasks to accomplish

• Recommendations for the choice of performance related binder tests

• Recommendations for selecting binder properties for different types of asphalt mixtures based on the performance related binder tests







Bitumen are tested on RB (EN 1427), pen. (EN 1426), Fraass (EN 12593), RTFOT (EN 12607-1), RFT (EN 12607-3), kinematic viscosity (EN 12595), capillary viscosity (EN 12596), rotating spindle viscosity (EN 13302), cone-plate viscosity (EN 13702-1), coaxial cylinders viscosity (EN 13702-2), elastic recovery (EN 13398), storage stability (EN 13399), Force ductility (EN 13589), DSR zero shear viscosity and SHRP parameters.









Used bitumen- Paving grade bitumen

| EN 12591                                       | 70/100 | 50/70 | 20/30 |
|------------------------------------------------|--------|-------|-------|
| Penetration @25 °C                             | 78     | 57    | 28    |
| Softening Point, C                             | 50     | 55    | 62    |
| Fraass Breaking Point, ℃                       | - 22   | - 19  | - 11  |
| Density @25°C, Mg/m <sup>3</sup>               | 1,014  | 1,017 | 1,017 |
| Kinematic viscosity @135°C, mm <sup>2</sup> /s | 372    | 579   | 1340  |
| EVT (170), ℃                                   | 153    | 160   | 178   |
| EVT (280), °C                                  | 140    | 148   | 165   |







## Used bitumen- Polymer modified bitumen

| EN 14023                 | PmB 1 | PmB 2           | PmB 3 | PmB 4 |
|--------------------------|-------|-----------------|-------|-------|
| Penetration @ 25 °C      | 70    | 45              | 79    | 30    |
| Softening Point, C       | 72    | <mark>73</mark> | 48    | 67    |
| Fraass Breaking Point, ℃ | - 18  | - 16            | - 16  | - 13  |
| Density @ 25℃ (Mg/m ³)   | 1,014 | 1,017           | 1,017 | 1,016 |
| EVT (170), °C            | 170   | 193             | 160   | -     |
| EVT (280), °C            | 155   | 176             | 148   | -     |







| Binder →            |                | A             | В       | С           | D               | Е     | F     | G     |
|---------------------|----------------|---------------|---------|-------------|-----------------|-------|-------|-------|
| Test↓ Unit↓         |                |               |         |             |                 |       |       |       |
| Penetration         | dmm            | 82            | 30      | 29          | 68              | 44    | 74    | 54    |
| Penetration mod.I   | dmm            | 147           | 43      | 42          | 104             | 66    | 141   | 88    |
| Softening point     | C              | 47.6          | 62.2    | 67.6        | 71.2            | 66.8  | 49.6  | 54.8  |
| Fraass Break Point  | C              | -17.5         | -9.5    | -10         | -12             | -14   | -19.5 | -18.5 |
| Kinematic viscosity | mm2/s          | 599           | 1370    | 2234        | 713             | 2055  | 416   | 596   |
| Dynamic viscosity   | Pa s           | 271           | 2697    | 5184        | 1405            | 5029  | 181   | 528   |
| Penetrati / RTFOT   | dmm            | 53            | 23      | 25          | 44              | 32    | 51    | 41    |
| Soft. Po./ RTFOT    | C              | 53.4          | 68.4    | 73.6        | 75.4            | 75.2  | 56.2  | 60.8  |
| Dyn. visc./RTFOT    | Pa s           | 666           | 7819    | 15758       | 1902            | 8886  | 825   | 2373  |
| Elastic recovery    | %              | 46            |         |             | 74              | 99    | 89    |       |
| Deformation en.II   | J/cm2          | 2.2           |         |             | 12.6            | 4.3   | 9.1   |       |
| Deformation e.III   | J/cm2          | 0.1           |         |             | 1.8             | 2.2   | 3.6   |       |
| Cone Plate v.IV     | Pa s           | 227           | 2022    | 3219        | 1407            | 2624  | 141   | 460   |
| Cone Plate v.V      | Pa s           | 0.219         | 0.587   | 0.734       | 0.286           | 0.691 | 0.133 | 0.176 |
| Ekviviscous t.VI    | C              | 145           | 162     | 167         | 151             | 168   | 138   | 144   |
| Coaxial cyl. v.VII  | Pa s           | 1.69          | 4.74    | 6.93        | 1.89            | 5.42  | 1.08  | 1.97  |
| Coaxial cyl. v.VIII | Pa s           | 0.43          | 0.80    | 1.26        | 0.42            | 1.17  | 0.21  | 0.38  |
| I Penetration at    | 35℃ with total | weight of 50g | 11      | At 10°C and | speed 50 mm/min |       |       |       |
| III At 25°C and sp  | eed 50 mm/mii  | n IV          | At 60℃  | V           | At 150℃         |       |       |       |
| VI According to A   | STM D 1559 (2  | 2382) VII     | At 120℃ | VIII        | A t 150℃        |       |       |       |







# Asphalt mix program



| 1-2 stone aggregates   |      |
|------------------------|------|
| Diabase (Croatia) – A1 |      |
| Limestone (Croatia)    | – A2 |

- 3 gradings of mineral mixture
- AC (asphalt concrete) G1
- SMA (stone mastix asphalt) G3
- PA (porous asphalt) G4
- MA (mastic asphalt) G2

| Binder | content | Default | C1 |
|--------|---------|---------|----|
|        | High (+ | 0.5%)   | C2 |
|        | Low (-0 | 9.5%)   | С3 |





Asphalt tests were mainly performed in Croatia. The testing program included wheel tracking tests (EN 12697-22) and Marshall stability at different temperatures. Stiffness (EN 12697-26) was performed in Bulgaria. Water sensitivity (EN 12697-12) was preformed in Slovenia. For some mixtures TSRST tests was performed in Poland.











| Binder →<br>Test↓ Unit↓      | A                  | В                 | С    | D                 | E    | F    | G     |
|------------------------------|--------------------|-------------------|------|-------------------|------|------|-------|
| Asphalt test on SMA/basalts  |                    |                   |      |                   |      |      |       |
| Wheel tracking rut mm        | 2.45               | 1.86              | 1.53 | 1.54              | 1.33 | 2.48 | 1.98  |
| IT-CY stiffness, 15℃ MPa     | 16 <mark>57</mark> | <u>4413</u>       | 4031 | <mark>2174</mark> | 3218 | 1369 | 2279  |
| Asphalt test on AC/basalts   |                    |                   |      |                   |      |      |       |
| IT-CY stiffness, 15℃ MPa     | 197 <mark>4</mark> | 4163              | 4121 | 2171              | 2823 | 1696 | 3043  |
| Asphalt test on AC/limestone | ,                  |                   |      |                   |      |      |       |
| IT-CY stiffness, 15℃ MPa     | 2494               | <mark>9132</mark> | 5297 | 4320              | 4572 | 2225 | 4934  |
| Asphalt test on PA/basalts   |                    |                   |      |                   |      |      |       |
| IT-CY stiffness, 15℃ MPa     | 838                | 2670              | 2889 | 1435              | 1975 | 969  | 198 7 |





Asphalt mix test  $\rightarrow$  SMA/wheel tracking AC(basalts)/stiff. AC(limest.)/stiff. PA(basalts)/stiff. Binder test

| V                      |                    |      |                    |      |
|------------------------|--------------------|------|--------------------|------|
| Penetration            | 0.43               | 0.88 | 0.67               | 0.97 |
| Penetration mod.I      | 0.58               | 0.87 | 0.70               | 0.96 |
| Softening point        | 0.90               | 0.23 | 0.22               | 0.37 |
| Fraass Break Point     | 0.50               | 0.55 | <u>0.5</u> 5       | 0.57 |
| Kinematic viscosity    | 0.57               | 0.50 | 0.19               | 0.58 |
| Dynamic viscosity      | 0.6 <mark>6</mark> | 0.44 | 0.18               | 0.56 |
| Penetration / RTFOT    | 0.5 <mark>3</mark> | 0.89 | 0.72               | 0.94 |
| Soft. point / RTFOT    | 0.94               | 0.25 | 0.23               | 0.40 |
| Dyn. visc. / RTFOT     | 0.44               | 0.67 | 0.25               | 0.75 |
| Elastic recovery       | 0.47               | 0.00 | 0.03               | 0.00 |
| Deformation energy II  | 0.48               | 0.93 | 0.78               | 0.97 |
| Deformation energyIII  | 0.86               | 0.08 | <mark>0.5</mark> 0 | 0.23 |
| Cone Plate viscosity/V | 0.72               | 0.54 | 0.30               | 0.66 |
| Cone Plate viscosityV  | 0.57               | 0.57 | 0.34               | 0.63 |
| Ekviviscous temp.VI    | 0.68               | 0.54 | 0.36               | 0.61 |
| Coaxial cyl. visk.VII  | 0.50               | 0.67 | 0.32               | 0.73 |
| Coaxial cyl. visk.VIII | 0.55               | 0.51 | 0.20               | 0.58 |
|                        |                    |      |                    |      |



Т





#### **Statistics:**

Univariate correlations between test methods:

Correlations between binder test methods Univariate correlations between binder test methods and asphalt test methods. Univariate correlation between binder properties and asphalt stiffness Univariate correlations between binder properties and water sensitivity. Univariate correlations between binder properties and asphalt rutting Univariate correlations between binder properties and Marshall stability and between Marshall stability and other asphalt mix properties.







#### Statistics:

Multivariate analysis of relation between binder test methods and asphalt properties:

Principal component analysis of binder data Partial least squares analysis of asphalt stiffness and binder data PLS2 model of asphalt stiffness versus category data PLS2 model of asphalt stiffness versus binder properties and category data Partial least squares analysis of water sensitivity and binder data PLS1 model of ITSR versus category data. PLS1 model of ITSR versus binder data and category data Partial least squares analysis of asphalt rutting and binder data PLS2 model of rutting propensity versus category data. PLS2 models of rutting propensity versus binder data and category data.







## **Conclusions:**

The stiffness modulus is correlated to penetration, the complex modulus or measures derived from the complex modulus,

We didn't find any relation between water sensitivity of asphalt and the mechanical and visco-elastic properties of the binder.

Rutting of asphalt as characterized by wheel tracking parameters is correlated to softening point or for example  $Ln(G'/(\eta/G'))$  at 60°C, which has been suggested as a surrogate method for the ductility, could be used to model the wheel tracking parameters.







High Modulus Asphalt Mixtures are not yet widely used in the Central and Eastern European countries.

The technology transfer has to take into account local climatic conditions as well as the availability of raw materials (binders, low quality aggregates, additives) and existing equipment, both for the road construction and for laboratory testing.

Within this task material recommendations were prepared based on laboratory and field data from the NMS countries.

Two full-scale trial test sections were constructed in Poland with typical pavement design. They were subjected to accelerated loading tests to validate the laboratory results.







Goal: to develop a concept of high modulus asphalt mixtures (HMAC) for the implementation in the Central and Eastern European countries General plan: Preparation of initial recommendations Laboratory implementation and tests Preparation of trial sections HVS tests Analysis and final report (recommendations)









Binder selection for test field:

| Property           | Unit   | DE 30B | 35/50  | <mark>20/30</mark> | MP10/20 |
|--------------------|--------|--------|--------|--------------------|---------|
| Penetration at 15℃ | 0,1 mm | 18     | 19     | 10                 | 9       |
| Penetration at 25℃ | 0,1 mm | 41     | 45     | 23                 | 21      |
| Softening point    | C      | 61,2   | 54,6   | <mark>61</mark> ,8 | 70,0    |
| Fraass breaking p. | υ      | -17    | -18    | -9                 | -12     |
| Ductility at 15℃   | cm     | -      | -      | -                  | 16      |
| Ductility at 25℃   | cm     | 67     | >150   | 118                | -       |
| Viscosity at 60℃   | mPas   | -      | 804000 | 3254444            | -       |
| Viscosity at 90℃   | mPas   | 66444  | 23117  | 59431              | 233444  |
| Viscosity at 135℃  | mPas   | 1796   | 834    | 1502               | 4674    |







| Property                            | Mineral<br>mixture<br>density,<br>g/cm3 | Asphalt<br>mixture<br>density,<br>g/cm3 | Asphalt<br>mixture<br>bulk<br>density,<br>g/cm3 | Air voids<br>content, %<br>v/v | Mean rut<br>depth, % | IT-CY, 10<br>⁰C, MPa | 4PB-PR,<br>complex<br>modulus,<br>10 ºC,<br>MPa | Fatigue<br>damage D,<br>% | Water<br>sensitivity,<br>% |
|-------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------|--------------------------------|----------------------|----------------------|-------------------------------------------------|---------------------------|----------------------------|
| Require-<br>ment,<br>HMAC<br>2007   | _                                       | _                                       | -                                               | 3,0 ÷ 5,0                      | ≤ 5,0                | 1                    | ≥ 14 000                                        | ≤ 50                      | ≥ 80,0                     |
| HMAC16 –<br>S, B=5,3 %              | 3,645                                   | 2,312                                   | 3,115                                           | 3,0                            | 2,3                  | 19 325               | 20 713                                          | 15,3                      | 121,3                      |
| HMAC16 –<br>L, B=5,5 %              | 2,698                                   | 2,479                                   | 2,403                                           | 3,1                            | 3,7                  | 23 511               | 19 837                                          | 31,7                      | 95,3                       |
| HMAC16 –<br>G, B=5,5<br>%           | 2,662                                   | 2,448                                   | 2,37 <mark>5</mark>                             | 3,0                            | 2,6                  | 17 241               | 17 291                                          | > 50                      | 107,8                      |
| HMAC16 –<br>C, B=4,9<br>%           | 2,691                                   | 2,493                                   | 2,419                                           | 3,0                            | 2,0                  | 18 918               | 16 927                                          | 19,7                      | 104,8                      |
| HMAC16 –<br>B, B=4,6 %<br>/ B=5,1 % | 2,850 /<br>2,850                        | 2,636 /<br>2,617                        | 2,550 /<br>2,568                                | 3,3 / 1.9                      | 2,7 /<br>6,3         | 21 118 /<br>19 272   | 19 756 / 17<br>950 >                            | >50 /<br>49               | 114,9 /<br>118,7           |









### **Performance-based Requirements**

**Resistance to rutting** large device (30000 cycles,  $60^{\circ}$ C)  $\leq 5,0\%$ . **Stiffness** 4 PB test method (10 Hz,  $10^{\circ}$ C)  $\geq 14000$  MPa. **Fatigue** 4 PB test method (10 Hz,  $10^{\circ}$ C)  $\epsilon 6 > 130 \mu$ m/m

For test field was selected:

The HMAC 16 with 20/30 binder – high modulus asphalt concrete appropriate for base and wearing courses, was designed according to requirements from WT NA- 2008 and 70-ZW-WMS 2007 for traffic category KR3-KR6:

- 20/30 binder ,
- limestone filler,
- limestone 0/5,6; 4/8, 8/16 [mm]







The next step of the task was construction work of test sections that was subjected to HVS loading. Test section was divided into two halves of the same layer thickness, but with two different mixes for base course: asphalt concrete (AC) and HMAC.







# HVS travel





HVS testing conditions

- Wheel type
- Wheel load
- Tire pressure
- Lateral distribution
- Speed
- Temperature

10-12 km/h +10 °C

60 kN (80 kN after 190 000 cycles)

Single

800 kPa

The type and frequenc<mark>y o</mark>f the measurements are listed below:

| • | Transverse profile                         | daily |
|---|--------------------------------------------|-------|
| • | Vertical strain in the top of the subgrade | daily |

- Vertical permanent deformation of the subgrade daily
- Transverse hor. strain in the bottom of asphalt daily

Measurements frequency for different loading levels:

- Transverse horizontal strain in the bottom of asphalt layers (second and the last day of the testing)
- Vertical displacement of the subgrade (second and the last day of the testing)
- Wheel loading: 30, 40, 50 and 60 kN









#### Average profile deformation:









Recommendations for Poland have been already prepared.

For implementation of HMAC in Slovenia, Serbia, Sweden, Croatia, and Estonia climate analysis was performed: Evaluation of effective temperature for fatigue (TEFF) PG temperatures for different layers.

*TEFF temperature was calculated on the basis of mean annual air temperature (MAAT) and thickness of typical flexible pavement structures.* 





Temperatures and recommended bitumen in Slovenia:

|           | Layer  | T <sub>a</sub> (max) | T <sub>a</sub> (min) | Depth | T <sub>d</sub> (max) | T <sub>d</sub> (min) | PG    |
|-----------|--------|----------------------|----------------------|-------|----------------------|----------------------|-------|
|           |        | °C                   | °C                   | mm    | °C                   | °C                   |       |
| Ljubljana | binder | 33,9                 | -17,0                | 80    | 45,3                 | -12,5                | 52-16 |
| Ljubljana | base   | 33,9                 | -17,0                | 120   | 42,3                 | -12,6                | 46-16 |
| Portorož  | binder | 33, <mark>3</mark>   | -11,2                | 80    | 45,0                 | -7,5                 | 52-10 |
| Portorož  | base   | 33,3                 | -11,2                | 120   | 41,9                 | -7,6                 | 46-10 |

 $T_a(max)$  – maximum seven day temperature, °C,

 $T_d(max)$  – maximum temperature of the pavement at depth d, °C,

 $T_{a}(min)$  – minimum air temperature, °C,

 $T_d(min)$  – minimum temperature of the pavement at depth d, °C,







Many regional and local roads have insufficient bearing capacity due to the increasing number of trucks and heavier axial loads.

An instrumented full-scale trial section was designed and constructed. A new local road is upgraded with six different pavement structures. All six test sections are instrumented to monitor deformations during the full-scale accelerated loading tests.

Laboratory and field tests of the materials (for unbound and asphalt layers) were performed.

Based on the data gathered from these tests and test sections constructed in the past years within some other projects, these upgrading techniques were evaluated.







## Type of road: local (in Dragučova)

Annual average daily traffic: very low

Date of construction: November 2007 in March 2008 (SCT, d.d.)

Type of road structures: aspahlt – 6 different pavement structures

Width: **3,6 m** 

#### Length: 6x50m=300 m

Thickness of unbound base layer: 20cm of gravel

Thickness of asphalt layer: 6 to 13cm









#### Test sections 1 and 2



| min. 50 m                                        |                         | min. 50             | m                                             |
|--------------------------------------------------|-------------------------|---------------------|-----------------------------------------------|
|                                                  |                         |                     |                                               |
|                                                  |                         |                     |                                               |
| AC Asphalt Concrete 0-16 (                       | ( <u>B 50/70), 6 cm</u> | AC Asphalt Concrete | 0-11s (B 50/70), 4 cn                         |
| AC Asphalt Concrete 0-16 (<br>Gravel 0-32, 20 cm | ( <u>8 50/70), 6 cm</u> | AC Asphalt Concrete | 0-11s (B 50/70), 4 cn<br>0-16 (B 50/70), 4 cm |







#### Test sections 3 and 4



| <b>(3</b> ) |                                          | (4)    |                                             |
|-------------|------------------------------------------|--------|---------------------------------------------|
|             | min. 50 m                                | - - Ŭ  | min. 50 m                                   |
|             |                                          |        |                                             |
|             |                                          |        |                                             |
| +           |                                          | •      |                                             |
|             |                                          |        |                                             |
|             |                                          |        |                                             |
| ar          | • Acobalt Concrete 0-11c (R 50/70) 4 cm  |        | AC Asnhalt Concrete 0-11s (R S0/70) d.cm    |
| AC.         | - Asphalt Concrete 0-225 (8 50/70), 4 cm | t<br>A | AC - Asphalt Concrete 0-225 (8 50/70), 4 cm |
| Grav        | el 0-32 20 cm                            |        | Gravel 0-32_20 cm                           |
| Rock        | Material Resistant to Freezing           |        | Rock Material Resistant to Freezing         |







#### Test sections 5 and 6

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (5)<br>min. 50 m                                           | 6<br>min. 50 m                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            | •                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SMA - Stone Mastic Asphalt 11s, 4 cm                       | SMA - Stone Mastic Asphalt 11s, 4 cm                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AC <sub>bin</sub> - Asphalt Concrete 0-22S (B 50/70), 6 cm | AC <sub>bin</sub> - Asphalt Concrete 0-22S (B 50/70), 6 cm |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gravel 0-32, 20 cm                                         | Reinforced Grid made of Steel                              |
| a second s | Gravel Material Resistant to Freezing                      | Gravel 0-32, 20 cm                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            | Gravel Material Resistant to Freezing                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                            |







On subbase ground from crumble and clay, base gravel from sandy gravel (Pos) was built in. Thickness of base gravel was up to 60 cm. Unbound base layer (NNP) had thickness 20 to 25cm. Uncrushed gravel with grain size 0 to 32 mm was used.

















Upgrading of asphalt macadam and light asphalt pavements to the bearing capacity level needed by EU-regulations

Laying asphalt over steel mesh

















#### Each day cross-profiles were measured









| No.                 | Asphalt thickness | No.                 | Asphalt thickness |
|---------------------|-------------------|---------------------|-------------------|
| test field/position | ст                | test field/position | СМ                |
| 1/1                 | 6,2               | 4/1                 | 12,9              |
| 1/2                 | 5,7               | 4/2                 | 13,8              |
| 1/3                 | 7,1               | <mark>4/3</mark>    | 14,4              |
| 2/1                 | <mark>9,6</mark>  | <mark>- 5/1</mark>  | 10,7              |
| 2/2                 | <u>10,6</u>       | <mark>5/</mark> 2   | 10,5              |
| 2/3                 | <i>11,1</i>       | <u>5/3</u>          | 10,5              |
| 3/1                 | <mark>9,2</mark>  | 6/1                 | 10,5              |
| 3/2                 | <mark>9,3</mark>  | <mark>6/2</mark>    | 11,0              |
| 3/3                 | 9,4               | 6/3                 | 10,9              |
|                     |                   |                     |                   |







#### HVS Test Sektion SP02 Rut depth

...



#### HVS Bearing Capacity Test SP02 Average Profile Deformation

. .







*HVS-Heavy vehicle* simulator – deformations on the surface of test fileds 5 and 6 and rainfall.





On the asphalt surface reflects deformations from unbound layers. Absolute value of deformation in unbound layers is round 3 times smaller than on asphalt surface, but the shape of deformation curve is the same.

On test filed 1 there is clear dependence of thickness of asphalt layers on depth of permanent deformation, but on test field 2 all permanent deformations are the same and do not depend on thickness. From these data we can conclude there is some limit to which it is reasonable to go with thickens of asphalt pavement. Of course the limit depends on quantity and quality of layer beneath the asphalt pavement and on the applied loads.

We did not see effect of reinforcement due delaminating between asphalt and steel mesh. There was stronger effect of ground water on deformations.







# Thank you for your attention!







