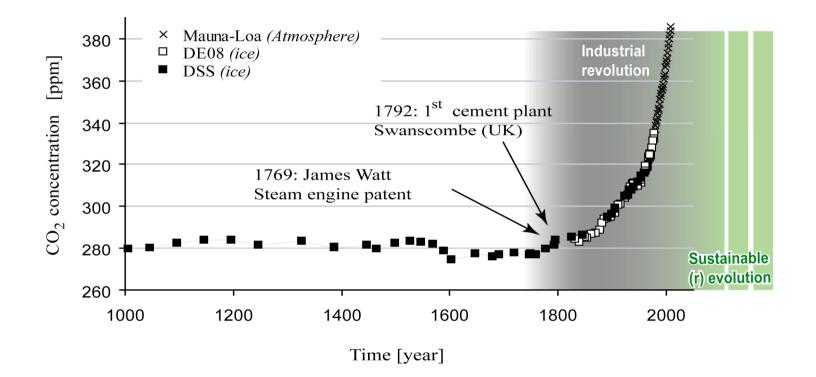


Composite UHPFRC Concrete construction for CO₂ savings

Guillaume Habert – Central Roads and Bridges Laboratry (LCPC), France


- 1. Motivation
- 2. Presentation of Life Cycle Assessment method
- 3. Environmental evaluation of Log Čezsoški bridge rehabilitation
- 4. Comparison with traditional rehabilitation
- 5. Conclusion and perspectives

1. Motivation

CO₂ emissions from cement industry: 7 % of total **CO**₂ emissions

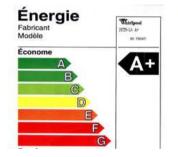
Need for CO₂ savings

Principles

- Functional Unit definition
- System boundaries and Inventory
- Environmental impact calculation

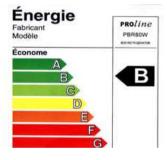
References

• ISO 14040: Environmental management - Life cycle assessment - Principles and framework



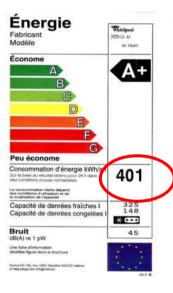
Principles

Functional Unit definition


American fridge

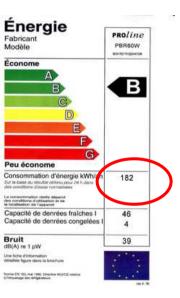
Small fridge

If the functional unit is 1 cooled m³, then A+ product consumes less than B product to cool 1 m³

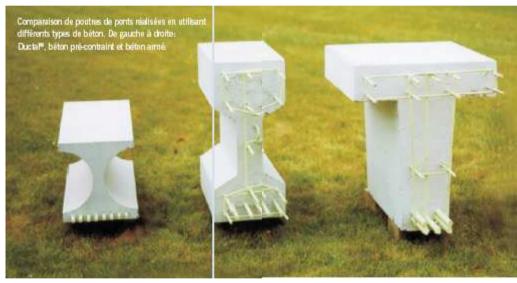


Principles

• Functional Unit definition


American fridge

Small fridge


If the functional unit is 1 fridge, then Fridge on the left consumes more than the one on the right

Principles

• Functional Unit definition

Bridge beams comparison

	Prestressed Ductal [©]	Prestressed concrete	Reinforced concrete
Weight (kg)	140	467	530
CO ₂ intensity (kg)	24	55	49

[Lafarge, Sustainable report, 2006]

Different evaluation if the functional unit is 1 m³ of concrete or 1 linear meter of beam

Principles

- Functional Unit definition
- System boundaries and Inventory
 - Depending on the boundaries of the system
 - » Energy for fridge use
 - » Energy and materials for fridge production
 - » Energy and materials for extraction and refining of Oil and Aluminium

References

• Ecoinvent (Swiss Life Cycle Inventory)

Database that gives Inventory with all indirect and hidden flows

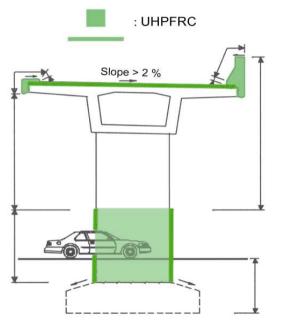
Principles

- Functional Unit definition
- System boundaries and Inventory
- Environmental impact calculation
 - Transformation of the list of input and output of the system into environmental impacts

Ex: The Global Warming Potential indicator $1 \text{ kg CO}_2 + 1 \text{ kg CFC-11} \rightarrow 3401 \text{ kg CO}_2 \text{ equivalent}$

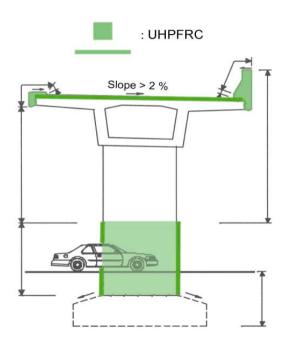
References

• CML01 (Guinee et al., 2002)

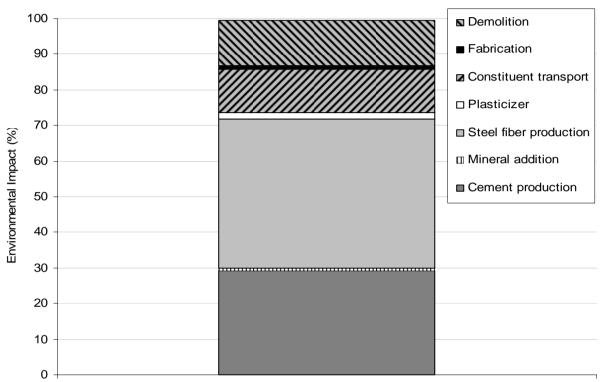


3. Environmental evaluation

System = materials and processes involved in the rehabilitation


- Boundaries = All processes involved from extraction of raw materials
- Inventory = Data from Ecoinvent, 2009; Kawai et al., 2008 and Chen et al., 2009
- Indicator = GWP_{100} (CML01)

log čezsoški bridge rehabilitation


	Material type	Distance
Demolition work		
Cleaning concrete upper surface with high water pressure		
Removal of existant asphalt and waterproofing mambrain & permanent disposal	Asphalt + Waterproofing membrane	30 km
Repair works		
Delivery and casting UHPFRC concrete	Concrete	5 km
Delivery and building asphalt pavement	Asphalt	5 km
Material production	(kg/m ³)	
Concrete		5 km
Cement	765	51 km
Mineral addition	765	200 km
Microsilice	153	540 km
Steel fibers	707	700 km
Super plasticizer	55	2 km
Water	224	
Asphalt		5 km

RCHES

3. Environmental evaluation

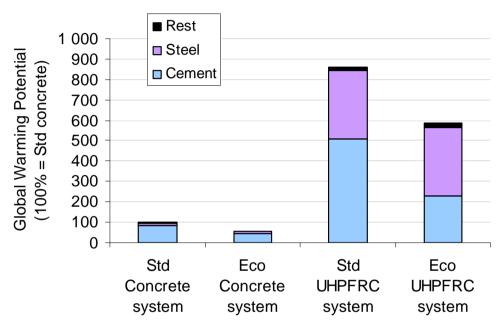
[Data from: EcoInvent, 2009; Sakai, 2007; Chen et al., 2009. Using CML01 calculation and Simapro sofware]

Global Warming Potential (kg CO2 eq)

-Main impacts from production of materials (vs fabrication and transport)

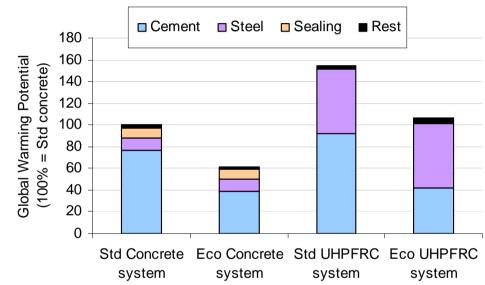
- Steel fibers represent a larger part than cement

- Comparison with a traditional rehabilitation
 In addition to work done with UHPFRC
 - Procedure
 - Removal and disposal of concrete
 - Delivery and building of bitumen sealing
 - Material
 - Concrete C30/37
 - Reinforcement steel



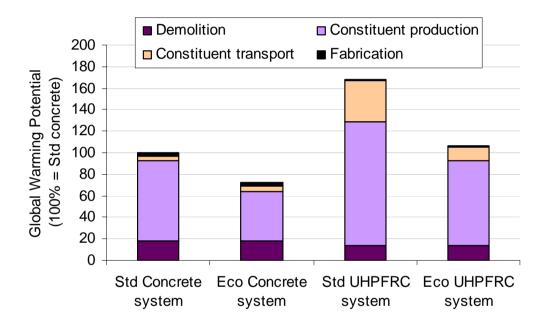
- Four rehabilitation systems have been compared
 - Traditional rehabilitation
 - With Standard Concrete (CEM I)
 - With « Eco Concrete » (CEM I + mineral additions)
 - UHPFRC rehabilition
 - With Standard UHPFRC
 - With « Eco UHPFRC » (CEM I + mineral additions)
- Four levels have been studied
 - 1 cubic meter materials
 - Effective material volumes per system
 - All rehabilitation work
 - All rehabilitation work considering life cycle

Comparison for 1 cubic meter of materials


-Traditional systems involve materials with much lower impact per cubic meter

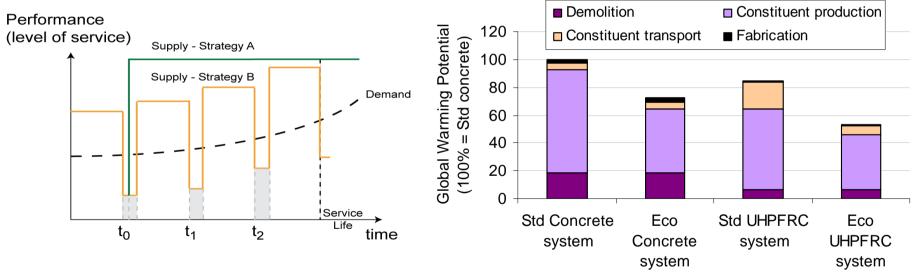
-Cement represents the larger part of CO₂ emission except for Eco-UHPFRC

 Comparison for effective material volumes per system


- Eco UHPFRC has similar impact than traditional system with standard concrete

- Waterproofing membrane = 10% of traditional systems

Comparison for the different rehabilitation work

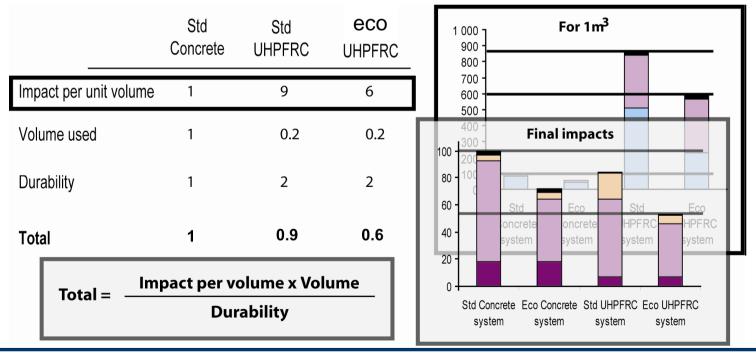

-Eco UHPFRC = similar impact than traditional system with standard concrete

- **Impacts from material production dominate** Transport impacts lower than 10% except for Std UHPFRC

 Comparison for the different rehabilitation system considering Life cycle
 Durability of UHPFRC = twice concrete durability

Eco UHPFRC has lower impact than traditional system

with Eco concrete


Even Std UHPFRC has similar impact than traditional solutions

Synthesis

- Impacts related to material production dominate
- The main parameters to take into account are:
 - Impact per unit of volume
 - Effective volume used for the different systems
 - Durability of the system

Log Čezsoški bridge rehabilitation

Eco UHPFRC (Arches) Traditional solution 23 tons CO₂ 21 tons CO₂

Car emissions

Yearly emissions from 1 car = 1-3 tons CO₂

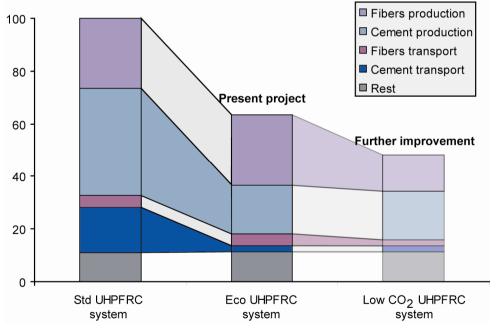
Rehabilitation work = yearly emissions from 8 cars

Impacts from traffic deviations

During site work, deviation travels: Deviation distance: 15 km (30 km return trip) Traffic: 100 cars a day

3 days of site work represents yearly CO₂ emissions for 1 car

5. Conclusion and perspectives


6

UHPFRC system

Further improvement:

- Use less materials and have similar impacts than traditional systems
- Use easy-to-implement technics
- Eco UHPFRC developped in Arches project
 - Use local cement and reduce transport impacts
 - Use less cement without compromising mechanical and protective properties of UHPFRC

Fibers with lower impact

Thank your for attention !

Guillaume Habert, LCPC e-mail: guillaume.habert@lcpc.fr

Aljoša Šajna, ZAG e-mail: aljosa.sajna@zag.si

