

STRATEGIC HIGHWAY RESEARCH PROGRAM

Accelerating solutions for highway safety, renewal, reliability, and capacity

SHRP 2 Renewal Program Overview

ARCHES – SPENS Seminar Ljubljana, Slovenia August 2009

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

STRATEGIC HIGHWAY RESEARCH PROGRAM

Accelerating solutions for highway safety, renewal, reliability, and capacity

- •Overview of SHRP2 Renewal Program
- •Review of Selected Projects
- •Planning for Implementation

Renewal Program - Goals

"<u>GET IN, GET OUT,</u> <u>STAY OUT</u>" The search for renewal tools and techniques that reduce preparation and execution times, reduce disruptions to traffic, utilities, and neighborhoods, and extend the time between renewal activities

28 Research Projects - \$32 Million

STRATEGIC HIGHWAY RESEARCH PROGRAM

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

Status - Renewal Research Program

Modular Pavement Technology

What we are facing...

- Heavy Traffic Volumes
- Concern to maximize the movement of traffic
- Restrictions on the time and length of traffic lane closures
- Need to maximize pavement service life
- Need to minimize impacts on traffic

What is SHRP2 Doing

Project RO5. Modular Pavement Technology

Focus on

Developing tools for the design, construction, installation, maintenance, and evaluation of modular pavement systems

2007	2008	2009	2010	2011	2012
	Phase 1		Phase 2		

Contract: Fugro, \$1M

Why Modular Pavements?

- > More control on the quality of the materials
- Better quality control of the fabrication
- Better curing conditions
- Minimal weather restrictions on when it can be placed
- Reduced delay prior to opening to traffic (no on-site concrete curing)

Modular Pavement Applications

- •Intermittent repairs plain concrete panels
- Full-depth or full panel replacement
- •Continuous Applications (longer length/larger area) – Rehab of ACP or PCCP; bridge approach slabs
- Conventional jointed systems
- Prestressed panels fewer active joints

On-going or Planned Projects

- New York DOT
- New Jersey DOT
- Delaware DOT
- Illinois Tollway
- Caltrans
- MTO, Canada

Gaps in Modular Pavement Technology

•Insufficient understanding of modular pavement behavior and long-term performance.

•Lack of Best Practices for design, construction and M&R of modular pavement systems

•Lack of well developed, experienced-based generic specifications for use of precast systems

•Well developed acceptance testing (QA) procedures for different systems

•Opening to traffic requirements

RO5. Modular Pavement Technology

Anticipated Products

- Guidance on the potential uses of modular pavement systems for specific rapid renewal applications.
- Generic Modular Pavement Design Procedures.
- Guidelines and model specifications for construction, installation, and acceptance criteria for modular pavements.
- A long-term evaluation plan to assess the performance of modular systems and refinements in designs and materials.

Railroad / DOT coordination

in Highway Renewal Projects

What we are facing...

- Railroad (RR) presence complicates highway renewal projects
- RRs are very protective of their corridors
 - Issues arise of safety, train operations, highway project scope
- Railroads are private & for profit
 - Most highway projects do not provide an inherent benefit to the RR
- Each RR is unique

R16. Railroad-DOT Institutional Mitigation

Strategies

Focus on

Identifying institutional arrangements and developing tools to facilitate beneficial relations between railroads and DOTs

Anticipated Products

- Effective practices document
- Model agreements
- Streamlined permitting procedures.
- Recommended specifications, institutional, and policy changes for implementation

Life of Bridges

What we are facing...

National Bridge Research Organization (NaBRO), Division of Nebraska Transportation Center University of Nebraska-Lincoln

What SHRP 2 is doing ...

Project R19-A. 100-Year Bridges: Innovative systems

Focus on

Improving existing and prove promising concepts for systems, subsystems, and components that historically limit the service life of bridges

2007	2008	2009	2010	2011	2012
	Phase ²	1	Phase	2	

Contract: University of Nebraska-Lincoln, \$2 M

a) Components should be designed considering the system

- a) Components should be designed considering the system
- b) Should be Easy to Replace

- a) Components should be designed considering the system
- b) Should be Easy to Replace

- a) Components should be designed considering the system
- b) Should be Easy to Replace
- c) Predictable Service Life
- d) Inspectability

- a) Components should be designed considering the system
- b) Should be Easy to Replace
- c) Predictable Service Life
- d) Inspectability
- e) Maintenance Plan

- a) Components should be designed considering the system
- b) Should be Easy to Replace
- c) Predictable Service Life
- d) Inspectability
- e) Maintenance Plan
- f) Economy Life cycle cost analysis needs to be part of design process

Products will include...

- New / improved systems, subsystems, components – *Proof of concept*
- Analysis methods, examples, details, etc.
- Recommendations for AASHTOformatted LRFD design and construction specifications.
- Stand alone document devoted to Design for Life.

Second Edition • 2004

Example of Technology Table

Concrete durability

Service Life Issue	Solutions	Advantage	Disadvantage	Failure Modes	Expected Service Life	System Preservation Requirements	Areas for Further Research
Freeze and thaw	Good air void system	High resistance to freezing and thawing	Reduction in strength due to extra air	Cracking, scaling	High	good drainage and low permeability for reduced level of saturation	Small, well distributed bubbles

PRELIMINARY – SUBJECT TO UPDATES

Example of Strategy Table

Concrete durability – Strategy to combat Freeze and Thaw

Strategy	Air Entrainment Criteria	Aggregate Criteria	Strength Criteria	Other Protection Methods	Maintenance Requirements	Comments
FT1	Min 6%	Sound	≥3500 psi?	N/A	None	

PRELIMINARY – SUBJECT TO UPDATES

SPECIAL REPORT 296

Implementing the Results of the Second Strategic Highway Research Program

Saving Lives, Reducing Congestion, Improving Quality of Life

IMPLEMENTATION

Recommendations of the report committee:

- Establish an implementation program
- The principal agent should be FHWA with AASHTO, NHTSA, and TRB
- Provide stable and predictable funding
- Formal stakeholder advisory structure
- Detailed plans as soon as possible

Principles

- Establish principal implementation agent early
- Involve stakeholders
- Communicate ceaselessly
- Prioritize products for optimal success
- Market and package/brand products
- Choose the right implementation strategies
- Balance divergent and convergent approaches

Key Strategies

- Strategic packaging and branding
- Technical assistance
- Standards, specifications, guidebooks, manuals
- Follow-on research, testing, evaluation
- Lead users and demonstration projects
- Training and education
- Long-term stewardship

Knowledge Management and IT

Recommendation 3

Funding: \$400 million over 6 years

Over and above ongoing FHWA and NHTSA research budgets

Early Implementation Activities

- TRB implementation coordinator—Jerry DiMaggio
- Meetings with FHWA,
 NHTSA, other stakeholders, international
- Prepare product lists
 "First Fruits"—early product marketing

Thank You for your Attention

For more information:

www.trb.org/shrp2

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES