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The Segmentation Problem

Input Image Segmentation

Goal: Break the input image into coherent regions 
accurately and quickly.
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Prior Work
Graph based methods

[Shi & Malik, 97]
[Felzenswalb & Huttenlocher, 04]

Learning based methods
[Shotton, Johnson & Cipolla, 08]
[Fowlkes, Martin & Malik, 03]

Feature based Methods
[Comaniciu & Meer, 02]
[Vazquez, Weijer & Baldrich, 08]

Wednesday, September 9, 2009



A Simple Clustering Scenario

Consider a set of feature 
vectors clustered in an m-
dimensional feature space.

Dasgupta’s notion of c-
separation [Dasgupta, 00] 
considers the ratio between the 
inter cluster distances and intra 
cluster distances.
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Random Projection / Splitting
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Random Projection / Splitting

u

Choices for splitting value, s
• s = mean (u.v)
• s = 0.5*(max(u.v) - min(u.v))

s
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• Each splitting plane contributes a bit to the hash code
• The splitting planes fracture feature space into a 
collection of convex cells - one for each hash code. 

• These cells can be associated with the vertices of a 
hypercube

•We can look for population maxima in this graph
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Key Idea: Points that are close to each other 
in space will hash to similar codes with high 
probability. [Indyk & Motwani, 98]

Locality Sensitive Hashing
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1. Smooth the image and associate a color 
feature vector with each pixel

2.Hash each feature vector into an n-bit code 
using n randomly chosen splitting planes

3.Maintain a count of the number of feature 
vectors mapped to each hash code

4.Identify local maxima in the code space

5.Assign each feature vector to the closest 
local maxima

6.Run connected components on the labeled 
pixels to yield coherent image regions.

Pseudo-Code for Segmentation Algorithm
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Important Parameters
Number of splitting planes, n

Increasing this parameter leads to more 
segments

Hamming Distance Threshold, k
Used to define local maxima on the 
hypercube - procedure looks at all nodes 
in the graph within k hops.
Increasing this parameter leads to fewer 
segments

Size of smoothing window, w
Increasing this parameter leads to 
increased smoothing, less color variation, 
and fewer segments
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A Difficult Situation

Feature sets are inextricably intertwined
no good separating hyperplane
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Sample Segmentations
(The good, the bad and the ugly)
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Sample Segmentations
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Evaluating Segmentations

Comparison to human segmentations in 
Berkeley Segmentation Database.
Global Consistency Error (GCE)- considers 
the fraction of each segment that is labeled 
inconsistently

closer to 0 is better
[Martin, Fowlkes, Tal & Malik, 01]

Rand Index - considers the fraction of pixel 
pairs that are labeled consistently 

closer to 1 is better
[Rand, 71]

[Unnikrishnan, Pantofaru & Hebert, 07]
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Histogram of GCE values over the dataset
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Mean GCE : 0.2235, Median GCE : 0.2157
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Histogram of Rand Index values over the dataset

Mean Rand Index : 0.7370, Median RI : 0.7833
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Comparing reported GCE 
values on Berkeley dataset

human segmentation
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Data from [Vazquez, Weijer & Baldrich, 08]

Wednesday, September 9, 2009



Input

Mean
Shift

Hashing

Comparison to Mean Shift

Image
number

1 2 3 4 5

Wednesday, September 9, 2009



Comparison to Mean Shift
GCE
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Comparison to Mean Shift
Rand Index
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Implementation

Scheme eschews distance computation in 
favor of hashing which simplifies control flow

Almost all of the stages in the segmentation 
procedure are embarrassingly parallel and 
amenable to GPU implementation

Implementation on one core of a 2.33 GHz 
Intel Core 2 Duo can run at 10Hz.
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Simple Ball Detector

Segment each 
image in video 
independently

Report all 
segments with 
appropriate size 
and aspect ratio.
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Live Demo
(Always Dangerous) 

Wednesday, September 9, 2009



Future Work

Experiments on texture features - higher 
dimensional vectors

Applications to tracking?

Tuning separation planes to content?

Wednesday, September 9, 2009



Summary

New approach to segmentation based on 
random hashing

Accuracy is comparable with current methods 
but speed is at least 10x faster. 

Fast segmentation can be employed to 
suggest groupings of pixels to higher level 
interpretation processes.
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