Mining visual actions from movies

Adrien GAIDON¹, Marcin MARSZALEK², Cordelia SCHMID¹

¹LEAR - INRIA Grenoble, LJK ²Visual Geometry Group - University of Oxford

Visual human actions

- Human actions: major visual events in movies, news, ...
- Real-world videos: complex imaging conditions, large intraclass variations, visually ill-defined concepts

- To help the analysis of large amounts of videos we:
 - discover what actions are performed
 - collect action samples for action recognition systems
 - Mining actions from movies using text and vision

Mining actions from movies (1)

- Why movies?
 - Large source of high-quality, realistic videos
 - Precise textual description: transcript (screenplay)
- Dataset: Buffy the vampire slayer TV-series
 - → 39 DVDs, 144 episodes, 100 hours of video, 10⁷ frames

EAR ZINRIA

BMVC 2009 LONDON - GAIDON, MARSZALEK, SCHMID: MINING VISUAL ACTIONS FROM MOVIES

Mining actions from movies (2)

Summary of our approach

- 1. Synchronize the transcripts with the videos
- 2. Segment the movies into short clips
- 3. Mine actions from transcripts
- 4. Rank text-retrieved actions by visual relevance

Main contributions

- Ranking text-mined actions by visual consistency
- Handling weak supervision obtained automatically
- Iterative re-ranking using regression: iter-SVR

Related work

Realistic videos

- Temporal segmentation of TV-series and character naming [Cour ' 08]
- Supervised action classification [Laptev ' 08, Marszalek ' 09]

Similar approaches

- Build collections of images for specific object classes
 [Berg ' 06, Fergus ' 05, Li ' 07, Schroff ' 07]
- Naming characters in images [Berg ' 04, Ozkan ' 06] and videos [Everingham ' 06]

Outline

Text-based mining of actions from videos

Temporal segmentation

Mining actions

Ranking action samples by visual consistency

Visual representation and consistency

Unsupervised estimation of inconsistency

Ranking with weak supervision

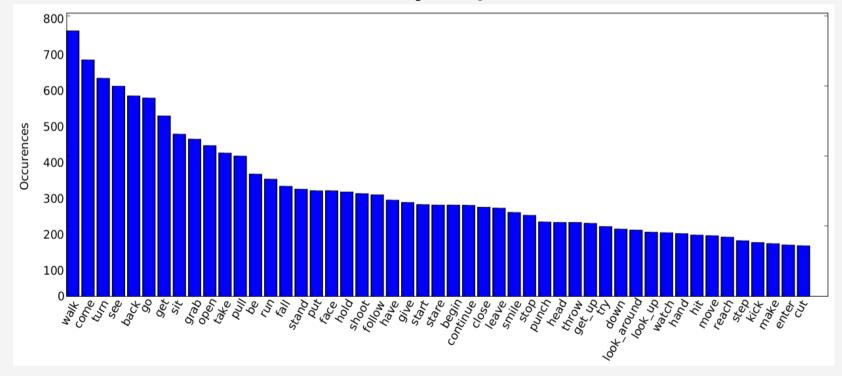
Experiments on Buffy

Text-driven temporal segmentation

- Align transcripts with videos by using subtitles [Everingham ' 06]
- Decompose the videos into short clips:
 - clip: video between two consecutive subtitles
 - associated text: transcript between the dialog lines

Text mining of actions

- Action in text: verb
- Action examples: clips whose textual description contain the corresponding verb [Link-grammar, Lafferty ' 92]
- Results on all of the "Buffy" episodes:



Outline

Text-based mining of actions from videos

Temporal segmentation

Mining actions

Ranking action samples by visual consistency

Visual representation and consistency

Unsupervised estimation of inconsistency

Ranking with weak supervision

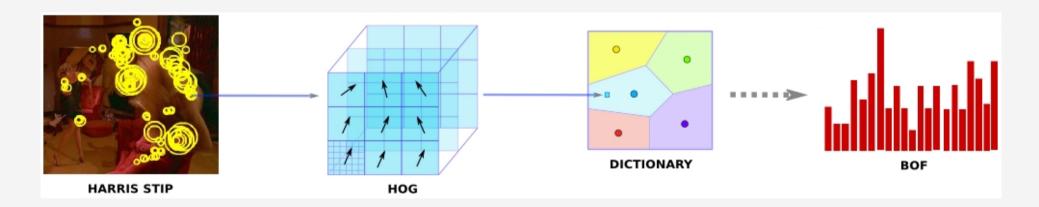
Experiments on Buffy

Visual consistency

- Problem:
 - Presence of visually irrelevant examples
- Goal:
 - Visually ranking action clips (retrieved from text)
- Assumption:
 - Relevant documents share common visual characteristics
- Consequence:
 - Retrieval errors are inconsistent samples
 - Relevance can be approximated by consistency
 - Ranking by visual consistency

Visual representation

- Bag of spatio-temporal visual words
 - Spatio-temporal Harris interest points [Laptev ' 05]
 - Description of cuboids using HOG [Dalal ' 05]
 - Bag-of-features using k-means with k=1000



Visual similarity: χ² kernel [Zhang ' 07]

Outline

Text-based mining of actions from videos

Temporal segmentation

Mining actions

Ranking action samples by visual consistency

Visual representation and consistency

Unsupervised estimation of inconsistency

Ranking with weak supervision

Experiments on Buffy

Unsupervised estimation of inconsistency

Outlier detection

- Outliers: "samples that deviate markedly from others" or "inconsistent with the remainder of the data" [Barnett ' 94]
- → Inconsistency score: "outlierness"
- Two different approaches
 - Distance-based: one-class SVM [Schölkopf ' 99]
 - → Inconsistency score: distance from a boundary of "normality" around most of the data
 - Density-based: densest component search [Ozkan ' 06]
 - → Inconsistent samples: in sparse regions of the feature space

Outline

Text-based mining of actions from videos

Temporal segmentation

Mining actions

Ranking action samples by visual consistency

Visual representation and consistency

Unsupervised estimation of inconsistency

Ranking with weak supervision

Experiments on Buffy

Ranking with weak supervision

- Supervised methods
 - Generally more efficient than unsupervised ones
 - Require training data: cost of supervision
- Weak supervision
 - Annotated training data with uncontrolled quality
 - → Positives: all of the retrieved examples (many FP)
 - → Negatives: random clips from the whole collection
 - Automatic: no manual intervention
 - Contains errors and uninformative samples

Baseline: binary v-SVM

- Classification between consistent / inconsistent
 - Training on (noisy) positives + (random) negatives
 - Inconsistency score: distance from separating hyperplane
- Efficiency based on regularization and generalization capabilities of ν-SVM [Vapnik ' 00]

Handling weak supervision (1)

- Learning with weak supervision
 - Weak model
 - Still able to correctly decide in the easiest cases
- Iterative re-labelling and re-training
 - 1. Learn weak model
 - 2. Detect most obvious inconsistent samples
 - 3. Switch their label and re-train: improved model
 - 4. Iterate until convergence

Handling weak supervision (2)

Problems

- Evaluation of "most obvious" inconsistent samples
- Wrong re-labelling
- Convergence
- Solution: Regression instead of classification
 - Iteratively learning a regression function quantifying inconsistency
 - Soft re-labelling of all the retrieved samples

Iter-SVR

- Support Vector Regression Machines (SVR)
 [Vapnik ' 96, Drucker ' 97]
- Iterative re-training of SVR with weak supervision
 - 1. Initialization:
 - Retrieved samples $P = \{(x_i^+, +1)\}$
 - Random negatives $N = \{(x_j^-, -1)\}$
 - 2. Learn SVR *f* (normalize outputs)
 - 3. Replace P by $\{(\boldsymbol{x}_i^+, f(\boldsymbol{x}_i^+))\}$
 - 4. Go back to 2. until convergence
 - Consistency score: final regressed values

Outline

Text-based mining of actions from videos

Temporal segmentation

Mining actions

Ranking action samples by visual consistency

Visual representation and consistency

Unsupervised estimation of inconsistency

Ranking with weak supervision

Experiments on Buffy

Experimental results (1)

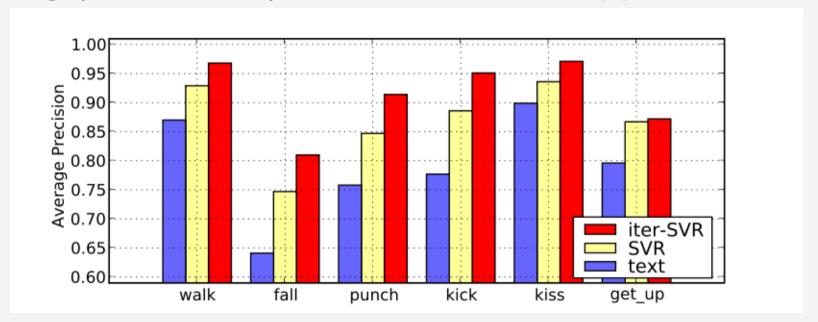
- Action examples automatically mined from Buffy for six action classes: 'walk', 'fall', 'punch', 'kick', 'kiss' and 'get up'
- Performance (Average Precision) comparison:

	walk	fall	punch	kick	kiss	get up	Mean
Iterative SVR	96.8	81.0	91.4	95.1	97.1	87.2	91.4
v-SVM	96.4	77.6	89.7	94.5	96.6	86.9	90.3
One class SVM	93.6	76.5	91.0	93.2	95.1	85.8	89.2
Densest component	93.2	73.6	90.7	93.0	94.6	89.2	89.1
Text	87.0	64.1	75.8	77.7	89.9	79.6	79.0

- → Best method: iter-SVR
- → Text-based retrieval always improved by using vision +12.4% on average, up to +16.9% for 'fall'

Experimental results (2)

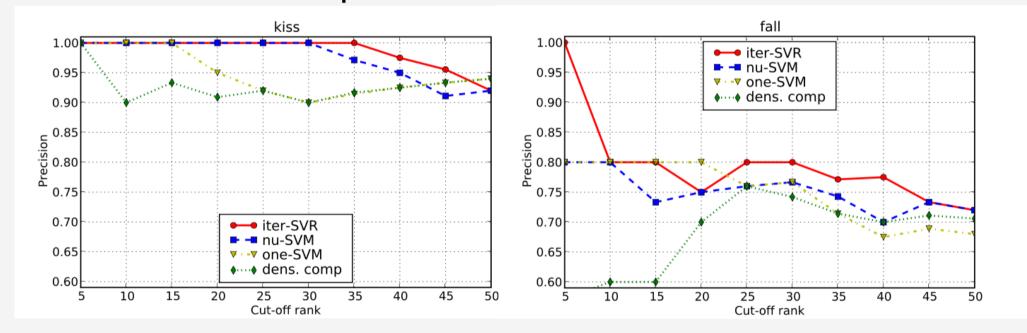
Comparison of text-based results, the SVR without retraining (1st iteration) and our *iter-SVR* approach:



→ Strong improvement due to iterative re-ranking (+4.4% on average between SVR and iter-SVR)

Experimental results (3)

Precision at the top N ranks:



- High precision at low recall
- Weakly supervised outperforms unsupervised

Experimental results (4)

→ Clips automatically retrieved and ranked with iter-SVR for the action 'walk'

Conclusion

Contributions

- Automatic approach to mine actions from large real-world video collections using visual consistency and text
- Weak supervision: iter-SVR algorithm, inexpensive, outperforms unsupervised methods

Future work

- Finer textual and visual representations
- Joint model text/vision
- Action localization (spatial and temporal)

Thank you for your attention

Any questions?

Appendix

Evaluation procedure

- Actions automatically retrieved from the Buffy episodes and their associated transcripts
- Six manually selected action classes: 'walk', 'fall', 'punch', 'kick', 'kiss' and 'get up'
- Manual annotation of the 100 shortest clips retrieved for each action:

	walk	fall	punch	kick	kiss	get up
true positives	80	59	72	73	71	74
false positives	12	33	23	21	8	19
unclear (unused)	8	8	5	6	8	7

100 random negatives sampled from the whole collection

Experimental results

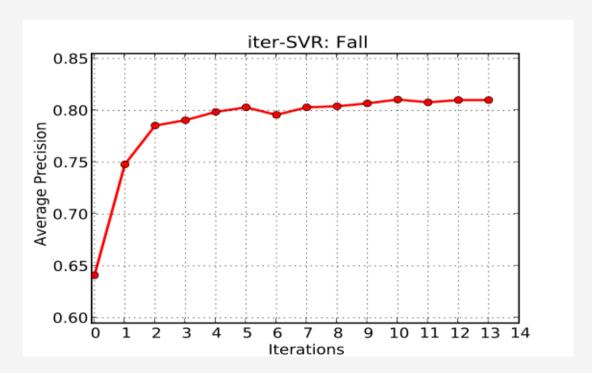
 Key frames of the 1st retrieval result and the 1st false positive (and associated rank) with *iter-SVR*:

- False positives:
 - Confusion at the text level
 - Visually ambiguous: multiple events, complex motions, partial observations, misleading context,...

Convergence

In our experiments:

- Fast convergence (less than 20 iterations)
- Last iteration: best one



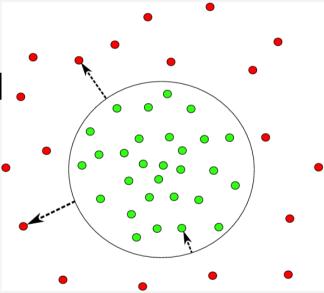
Experimental results

 Clips automatically retrieved and ranked with iter-SVR for the action fall

One-class SVM

 Unsupervised estimation of the support of the underlying distribution of the data:

- Finding a boundary around a small region capturing most of the data
- Maximal margin separation of the samples from the origin



→ Inconsistency score: distance from margin

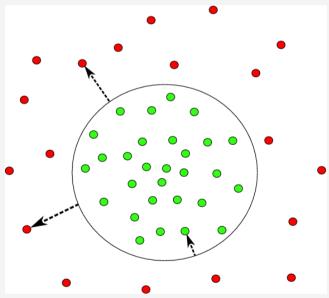
One-class SVM (2)

• Inconsistency score = distance from margin

$$\frac{f(\mathbf{x})}{||\mathbf{w}||}$$

-
$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i K(\mathbf{x_i}, \mathbf{x}) - b$$
: SVM confidence value of \mathbf{x}

- $-\frac{2}{||\mathbf{w}||}$: margin width
- x: training samples
- K: kernel (χ² kernel in our case)
- $-\alpha$: SVM dual variables
- b: obtained from KKT conditions

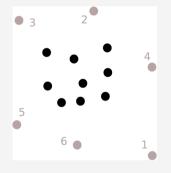


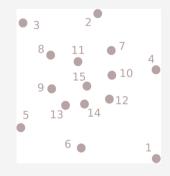
Densest component

- Set of the most consistent samples: densest subgraph of the similarity graph:
 - Nodes: clips, edge weights: visual similarity between clips
 - Density of a set of samples: average degree of the induced sub-graph

Densest component (2)

- Algorithm: greedy 2-approximation [Charikar'00]
 - Iteratively deleting the node with minimal degree
 - Densest component = sub-graph with maximal density

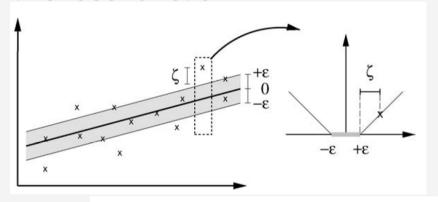




- Ranking by inverse pruning order
 - Most inconsistent samples = nodes with minimal degree, i.e. lying in the sparsest regions

SVR

- Support Vector Regression Machines (SVR) [Vapnik'96, Drucker'97]
 - Fit data in a "tube" around regression function f
 - "Tube": ε-sensitive loss function



- Regression function: $f(\mathbf{x}) = \sum_{i=1}^{n} (\alpha_i^* \alpha_i) K(\mathbf{x_i}, \mathbf{x}) b$
 - K: kernel (χ² kernel in our case)
 - $-\alpha_{i}, \alpha_{i}^{*}$: dual variables
 - b: obtained from KKT conditions