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Outline
• Compressive sensing (CS) 

– Basics
– Restricted isometry property (RIP), Johnson Lindenstrauss (JL) lemma.
– Recovery algorithms

• Three examples
– Reconstruction from gradient fields using l-1 optimization
– Sparsity-induced iris recognition and cancelability using random 

projections.
– CS and graphics
– Other applications

• Concluding remarks
– Breakthroughs will come in integrated compressive sensing and 

processing
– l-1 optimization and sparse representations by themselves can take you 

only so far in solving computer vision problems!



Sparsity: Motivation
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Compressive sensing

• Directly acquire “compressed” data

• Replace samples by more general 
“measurements”

compressive sensing transmit/store

receive reconstruct

From Dr. V. Cevher



Compressive sampling

• When data is sparse/compressible, can directly 
acquire a condensed representation with 
no/little information loss through 
linear dimensionality reduction

measurements
sparse

signal

nonzero
entries

From Dr. V. Cevher



How does it work?
• Projection 

not full rank…

… and so 
loses information in general

• Infinitely many    ’s map to the same
• But we are only interested in sparse vectors
• Design so that each of its MxK submatrices

are full rank
– preserve information in K-sparse signals
– Restricted Isometry Property (RIP) of order 2K

From Dr. V. Cevher



Restricted Isometry Property (RIP)

• RIP is a sufficient condition for Basis Pursuit algorithms to find the 
sparsest solution.

• When RIP holds,    approximately  preserves the Euclidian length of    -
sparse signals.

• All subsets of     -columns taken from    are nearly orthogonal. 
• RIP has been established for some matrices such as random 

Gaussian, Hadamard, and Fourier, however, in practice there is no 
computationally feasible way to check this property for a given matrix, 
as it is combinatorial in nature.

• Other conditions for  l0-l1 equivalence include incoherence, phase
transition diagrams [Donoho, 2004] and many more.

• RIP-p property, where the ℓ-2 norm is replaced by the ℓ-p norm

A matrix     is said to satisfy the RIP of order     with constants                    if

for any    such that                   . [Candes and Tao, 2005].



Insight from the 80’s [Kashin, Gluskin, 1984]

• Draw     at random
– iid Gaussian
– iid Bernoulli

• Then      has the RIP with high probability  
as long as   

– Mx2K submatrices are full rank

columns

From Dr. V. Cevher



• Recovery: given
(ill-posed inverse problem) find           
(sparse)

• fast, wrong
• correct, slow
• correct, efficient

mild oversampling
[Candes, Romberg, Tao; Donoho]

number of measurements required

CS signal recovery

linear program

From Dr. Cevher



CS recovery algorithms

• Convex optimization
– noise-free signals

• Linear programming (Basis pursuit) [Chen et al, 2001, Donoho
2006]

• Bregman iteration, [Osher, et al, 2008]

– noisy signals
• Basis Pursuit De-Noising (BPDN)
• Second-Order Cone Programming (SOCP)

• Iterative greedy algorithms
– Matching Pursuit (MP) [Mallat and Zhang, 1993]
– Orthogonal Matching Pursuit (OMP) [Pati et al, 1993, Mallat et al, 

1994 and Tropp and Gilbert, 2007]
….

software @
dsp.rice.edu/csFrom Dr. Cevher



BPDN

• Basis Pursuit Formulation (A Linear program)

• Noisy measurements

• Basis Pursuit De-Noising

From Dr. Cevher
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Recent developments in computer 
vision/graphics

• Single pixel camera [Duarte, et al, 2008]
• Compressive sensing for background subtraction 

[Cevher et al, ECCV 2008]
• Face recognition [Wright et al, 2009]
• Compressive Sensing of Reflectance Fields

– Peers et al, ACM Transactions on Graphics, 2009)
• Compressive SAR imaging
• Sparsity-induced algorithms for iris, shape from 

gradients, super resolution…
• Floodgates have been opened!



Gradient domain processing: 
vision and graphics

Estimation
of Gradients

Manipulation of 
Gradients

Non-Integrable 
Gradient Fields

Reconstruction 
from 

Gradients

Images/Videos/
Meshes/Surfaces

Images/Videos/
Meshes/Surfaces

Our method:
Fit surface in 1-norm 
sense



Few applications
Shape from Shading, Photometric Stereo

Height Field

Edge suppression under significant illumination variations

High Dynamic Range (HDR) Compression



Gradient fields and integrability
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Reddy, Agrawal and Chellappa
CVPR 2009



Non-integrable gradient fields
• Estimation of gradients

• Manipulation of integrable gradients

Input Images

Surface Normals/Gradients

Not-integrable

Image Sx Sy

Gradient 
Manipulations

New 
Gradients

• E.g. Shape from Shading, Photometric Stereo
• Noise and outliers in estimation

• Synthesize new gradient field
Not-integrable

Reddy, Agrawal and Chellappa
CVPR 2009



H W×

g Ds e= +

Cg CDs Ce= +
d Ce=

( 1)( 1) ( 1) ( 1)H W H W W H− − × − + −

( 1) ( 1)H W W H− + −

Underdetermined system

( , )S x y• surface of size vectorized to give s

• Gradients     obtained from estimation/manipulation 

of size

• Non-integrable gradient field: Non-zero curl values 

Curl matrix C of size
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-1  1            1    -1

-1  1              1    -1

C =

Discrete domain

g

d

D: Gradient operation

On s

Reddy, Agrawal and Chellappa
CVPR 2009



• Graph analogy: 2D grid as planar graph
– Nodes as surface values
– Edges as gradient errors
– Minimal set is the spanning tree

• Would like to find the spanning tree (T) which has least 
errors on its edges

• HW-1 edges in spanning tree (equal to N-M)

CT
C

Interpretation

is full rank

• If gradient errors in edges E, is       full rank?
• What               such that          is full rank?
• Restricted Isometry Property of  C?

EC

T

E

SE E⊂
SEC

Reddy, Agrawal and Chellappa
CVPR 2009



CS and reconstruction from 
gradient fields

• Recover s from

• Using CS we can analyze when recovery is 
guaranteed.

• For non contiguous errors C has RIP.
• How many outliers can l1 minimization fully 

correct?

• How should they be distributed?
• If large number of outliers then what outliers 

does l1 find and correct?

g Ds e= +

RIP -1: Berinde, et al, 2008 Reddy, Agrawal and Chellappa
CVPR 2009



• Corrects outliers. Performs well in noise too.
• Good error confinement property locally

1l

Ground truth Least squares

- minimization

1-norm fit

1
ˆ arg mine e= d Ce=s.t.

Reddy, Agrawal and Chellappa
CVPR 2009



1l minimization
Under noise and outliers

Reddy, Agrawal and Chellappa
CVPR 2009



1l minimization
Comparison

Local error confinement

Reddy, Agrawal
and Chellappa, CVPR 2009



Face recognition via sparse 
representations

• Automatic face recognition algorithm robust to 
occlusion, expressions and disguise.

• Represent the test face as a sparse linear 
combination of the training faces.

• Estimate the class of the test image from the 
sparse coefficients. 

• Can identify and reject non face images.
• Performance affected by illumination variations 

and misalignment.
• John Wright et al. PAMI 2009



Formulation

• Let vij be the jth training image in the ith class.

• Matrix A contains the training face images as its 
columns.

• The test image y can be written as a linear 
combination of the faces of the correct class.

• So if y belongs to the ith class

• It can be written as 

John Wright et al, PAMI 
2009



Formulation

• Since the number of classes is high, the coefficient vector is sparse.
• So it can be recovered by solving the Basis Pursuit problem

• The non zero coefficients in the sparse coefficient vector will 
correspond to the true class. 

• Compute the residuals obtained when the test face is represented
using each class separately.

Where          is non zero only for the ith class columns.
• The class which minimizes this residual error is the estimated class 

of the test vector.
• Best results on Yale B data base.
• Robust to occlusion and disguise.
• John Wright et al. PAMI 2009

)(xiδ



Handling registration and 
illumination

• Wagner et al. CVPR 2009 
• Alignment is handled by finding the best 

transformation between the training and test 
images.

• Illumination variation is taken care of by 
including training images under varying 
illuminations.
– Restrictive

• The sparse representation based algorithm is 
performed on this modified gallery.



Iris recognition - 1

• Recognize a person from the texture features on 
his/hers iris image [Pillai et al, BTAS 2009]

• Existing algorithms [Daugman 93] give high 
recognition rates.

• Iris images acquired from a partially cooperating 
user often suffer from 
– Specular reflections, segmentation error, 

occlusion & blur.

Pillai et al, BTAS 2009
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Iris recognition - 2

• We developed a sparse representation-based algorithm 
for iris image selection and recognition.
– Can perform selection and recognition in a single step.
– Can handle wide variety of distortions like blur, 

occlusion, specular reflections and segmentation 
errors.

– Is robust to occlusions common in iris images.
• Sparsity in representation is a measure of image quality 

and can be used for iris image selection.
• Iris is divided into multiple sectors to take care of 

problems due to occlusion.
• Sparsity is better for iris than faces!
• Pillai et al, BTAS 2009



Basic formulation
• Assume L classes and n images per class 

in gallery.
• The training images of the kth class is 

represented as

• Dictionary D is obtained by concatenating all the 
training images

• The unknown test vector can be represented as a 
linear combination of the training images as

Pillai, BTAS 2009



Basic formulation

• In a more compact form

• We make the assumption that the test image 
can be written as a linear combination of the 
training images of the correct class alone.

• So the coefficient vector α is sparse.
• Hence α can be recovered by Basis Pursuit as 

Pillai et al, BTAS 2009



Sparsity for image selection

• When the test image is well acquired, the coefficient 
vector α will be sparse.

• A measure of sparsity is the Sparse Concentration Index 
SCI, defined by

• SCI measures the fraction of the energy present in the 
“best” class.

• So well acquired images will have high SCI.
• Hence reject the images having low SCI value.
• Pillai et al, BTAS 2009



Selection and recognition algorithm

• Given the gallery, construct the dictionary D by arranging 
the training images as its columns.

• Using the test image, by Basis Pursuit, obtain the 
coefficient vector α.

• Obtain the Sparsity Concentration Index (SCI).
• Compare SCI with a threshold to reject the poorly 

acquired images.
• Find the reconstruction error while representing the test 

image with coefficients of each class separately.
• Select the class giving the minimum reconstruction error.
• Pillai et al, BTAS 2009



Results
Image Selection – ROC curves SCI Variations with distortions

Recognition Rates On ND-IRIS-0405 Dataset.

Segmentation 
Error

Occlusion 

Blur 

Reflections

Pillai et al, BTAS 2009



Sectored random projections For 
cancelable iris biometrics

• Need For Cancelability
– Iris patterns are unique to each person.
– Iris patterns cannot be re-issued if stolen.
– Different patterns required for different applications.

• Cancelable Biometrics – Apply a revocable and non 
invertible transformation on the original one [Ratha et 
al, 2001, Teoh et al, 2006, Hao et al, 2006]

• Requirements
– Performance should be retained.
– Should be non-invertible and revocable.
– Different codes for different applications.

• Pillai et al, Submitted for ICASSP 2010



Random projections for cancelability

• Random Projections (RP) can be utilized due to Johnson 
Lindenstrauss (JL) lemma [1984].

• Thus distance between two higher dimensional vectors 
remain same even after projecting to a lower dimensional 
space using certain mappings.

• One such mapping is projection using a Random Matrix.



Random projections
• N dimensional Gabor features of the iris image g is 

projected randomly onto a subspace of dimension n as 
follows

• Recognition is performed on the vector y.
• Direct Random Projections on iris images give poor 

results due to :
– Occlusion due to eyelids act as outliers corrupting the 

whole data after the linear transform.
– Combines both the good and bad regions of the iris 

image.
– Pillai et al, Submitted to ICASSP 2010.



Sectored random projections (SRP)

• Apply RP to different iris sectors separately.
• Advantages

– Bad regions cannot corrupt the whole image.
– Computations reduced from N2 to Nk, K <<N.

• How SRP meets the Cancelability Requirements ?
– Performance - does not drop after applying SRP.
– Non-Invertibility - due to RP and Dimension Reduction.
– Revocability – Apply a new RP if the old patterns are lost.
– Different Applications – Assign a different matrix for each 

application.
– Compatibility – Only a single matrix multiplication stage has 

to be added to existing algorithms.
– Pillai et al, Submitted to ICASSP 2010.
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Results – Recognition performance

Observations

• SRP performs close to the original system without random projections.
• Only minor drop in performance due to dimension reduction upto 30% of     
the original dimension.
• Dimension reduction further improves non invertibility due to 

the non zero dimension of the null space.
Pillai et al, Submitted to ICASSP 2010.

Performance Comparison Effect Of Dimension Reduction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
30

40

50

60

70

80

90

100

110
Effect Of Dimension Reduction

Dimension Fraction

R
ec

o
g

n
it

io
n

 R
at

e 
(%

)

 

 

Baseline
RP Same Matrix
SRP Same Matrix
RP Different Matrix
SRP Different Matrix



Model-based compressive sensing 
for reflectance fields

A Hybrid Subspace Sparse Signal Model
A. Sankaranarayanan and A. Veeraraghavan, 

2009.



Capturing surface properties

• Bidirectional Reflectance Function
– Two incident angles, Two observation angles
– Measures amount of “light” in the outgoing direction 

given unit incident irradiance.
– 4D function characterizing surface properties
– Acquisition ?

• Reflectance field
– Fix outgoing direction

Incoming 
Light Outgoing 

Light

Surface 
Normal

(Image courtesy Wikipedia)



Reflectance field of a scene

Shadows

Lambertian Specular



Compressive acquisition

Premise: BRDFs are inherently redundant and 
compressive

• Measurements are inherently costly!

• However, we can exploit the compressibility of 
the signal to solve for the Reflectance field from 
an under-determined set of equations.

• Solution: Take compressive measurements

• Use an “l1-inversion” to obtain the RF.

(Peers et al, ACM ToG, 2008)



Reflectance field acquisition

RF characterizes how 
appearance of a scene changes 
with changing scene illumination.

Intensity profile 
at a pixel

Reflectance 
transfer 
function

Lighting 
conditions

Ltc T
ii =

When ti is sparse in Basis B we can directly apply compressive sensing on 
Random multiplexed lighting L.

Solving for each pixel independently leads to incoherent reconstructions. 
Need to enforce spatial coherency in reconstruction.
Peers et al , ACM ToG, 2009



Enforcing spatial coherency

Ltc T
ii = Image formation at each pixel

TLC = Stacking individual pixels to get the 
image formation for the scene

TC T B B L=
B is the sparsifying basis for T and 
exploits the redundancy in the RF of 
an individual scene point

ˆ ˆ( )( )TPC PTB B L TL= =
P is the spatial coherency basis. P is 
dependant on the scale at we choose to 
enforce spatial correlations. At different scales 
we have different “P” matrices.

Peers et al, ACM ToG, 2009



Compressive sensing set up (Peers
et al 2009)

• A single video camera and a CRT monitor as a 
controllable high-resolution light field emitter.

• Radiometric calibration of the camera and the emitter
• A 2-D image constructed from each measurement vector 

from measurement ensemble (Gaussian random Haar
wavelet coefficients) is emitted from the CRT monitor.

• A photograph of the scene is taken under this 
illumination contributing to a column in of the observation 
matrix.

• Has issues with measurement noise, quantization noise, 
etc.

• The authors (Peers et al, ACM ToG 2009) present novel 
solutions to these problems.



(from Compressive measurements) (Ground truth )

(Results courtesy Peers et al. ToG, 2008)

Relighting results



Real Signals have more structure 
than just Sparsity

Diffuse components of 
the RF are highly 

subspace compressible

In contrast, high 
frequency specularities

are sparse.



The same is true of other 
visual signals such as 
reflectance fields (RF).

Here, the Lambert’s part 
of the RF is subspace 
compressible, while the 
high frequency specular
part of the RF is sparse.

Images …

A. Sankaranarayanan
and
A. Veeraraghavan, 2009.



General signal models

• Real world signals exhibit richer structure than just 
sparsity or subspace compressibility.

• A mixture of these two models is a better approximation 
of the actual signals. 

• Merge the traditional theory of subspace sampling with 
that of compressive sensing to address these hybrid 
subspace sparse signals.

• A. Sankaranarayanan and A. Veeraraghavan, 2009.



Effectiveness of the hybrid subspace 
space model

The HSS signal model gives much better approximations at high compression 
ratios. Here, the signals are 64x64 Reflectance fields over two databases of 
BRDFs. A. Sankaranarayanan and A. Veeraraghavan, 2009.



Solving under the HSS model

L2 norm for the subspace 
compressible components

L1 norm for the sparse 
components

Observation error. Ap and Ac are the basis 
corresponding to the subspace and sparse 
components respectively

A. Sankaranarayanan and A. Veeraraghavan, 2009.



Advantages of the HSS Model

• Typically, for a K-sparse signal we need O(K log (N/K)) 
measurements, which say we approximate with 4K measurements

• Under a HSS model with K1 subspace components and K2 sparse 
components, we would need (K1 + 4*K2) measurements, as 
opposed to 4*(K1+K2) as required for a naïve CS scheme.

• Equivalently, this can be recast as better reconstruction SNR for a 
given compression ratio.

• CONS: Need to know subspace components apriori. This may 
require domain knowledge or lots of data from which the subspace
and sparse projection can be learnt.

• A. Sankaranarayanan and A. Veeraraghavan, 2009.



Compressive acquisition



Compressive measurements

A. Sankaranarayanan and A. Veeraraghavan, 2009.



Scene relighting Results (RF was
acquired using 192 measurements)

Relighting 
pattern

A. Sankaranarayanan and A. Veeraraghavan, 2009.



Other works not discussed

• CS for background subtraction (Cevher et al, ECCV 
2008).

• CS and particle filters (Carin, Workshop on Stat. Signal 
Proc., 2009)

• Compressive wireless arrays for bearing estimation of 
sparse sources in angle domain (Cevher et al, ICASSP 
2008).

• Compressed sensing for multi-view tracking and 3-D 
voxel reconstruction (Reddy et al, ICIP 2008).

• CS for SAR imaging (Patel et al, ICIP 2009).
• …



Remarks

• Compressive sensing cannot and will not solve all 
computer vision problems.

• May provide better solutions in some cases.
• Renewed interest in l-1-based methods!
• Compressive sensor design will lead the way.

– Coded aperture imaging (MERL)
– Algorithms have to be integrated with sensing to reap 

the full benefits. 
– Tempting to replace all l -2 regularization methods 

with l -1. 
• Ask if you can do without CS before attempting to do 

with CS!
• Riding another wave!


