Gait Representation Using Flow Fields

Khalid Bashir, Tao Xiang and Shaogang Gong

Queen Mary University of London

The Problem

- Performance of Gait Recognition under different <u>Covariate Conditions</u>.
- What?
 - Gait recognition is recognizing people by the way they walk.
- Why?
 - Gait recognition is non intrusive
 - Operates at a distance without subject cooperation.

Covariate Conditions?

- Conditions that effect gait.
- Can be divided into two catagories

1)Effecting features extracted from gait

Carrying Condition, Clothing Condition, View etc
2)Effecting gait itself

• Shoes, Time, Injury, Speed etc

Examples

Normal

Carrying Condition

Clothing Condition

Fast

Bare Feet

Slow

Existing Work

GEI PAMI 06

Based on Motion Intensity

- No Motion Direction
- Not Enough Descriptive Power

Our Solution

- A novel representation of gait
- Constructed from optical flow computations
- Gait represented in a set of descriptors
 - Shape Descriptor
 - Motion Direction Descriptors

Our Approach! Flow Field Representation of Gait

MII and MDIs under different conditions

Results (CASIA)

Probe Set	ТМ	GEI	М	M_{x}^{+}	M _x -	M_y^+	Fusion
CASIASetA2	97.6%	99.4%	99.4%	96.3%	84.9%	93.4%	97.5%
CASIASetB	52.0%	60.2%	56.6%	57.3%	32.8%	46.7%	83.6%
CASIASetC	32.7%	30.0%	14.8%	50.9%	29.1%	24.6%	48.8%
Overall	60.2%	62.8%	56.7%	68.2%	48.9%	54.9%	76.6%

Normal

Carrying Condition

Clothing Condition

Results (SOTON Large Set A & E)

	Pro	be Set	М	M_x^+	Μ	- x	M_y^+	Fusion	
	Soto	onSetA	99.1%	96.5%	96.8	5%	93.1%	99.1%	
Probe	Set	MSI	Frieze	SVB Friez	ze N	ASC	F+SST	GEI	Fusion
SotonS	SetA	84.8%	96.0%	84.0%		84	.0%	99.1%	99.1%

Probe Set	Wagg	М	M_x^+	M_x^-	M_y^+	Fusion
SotonSetE	67.0%	100.0%	93.1%	93.9%	93.9%	97.4%

Soton Set A

Soton Set E

Results (SOTON Small Set A)

Probe Set	GEI	Μ	M_{x}^{+}	M_x^-	M_y^+	Fusion
SotonSmallSetN	100%	100%	100%	100%	100%	100%
SotonSmallSetB	86.3%	76.2%	76.2%	66.7%	61.9%	90.4%
SotonSmallSetC	72.7%	54.6%	81.8%	63.6%	72.7%	90.9%
SotonSmallSetSh	100%	100%	92.3%	82.1%	87.2%	100%
SotonSmallSetS	100%	100%	85.7%	76.1%	76.2%	100%
Overall	94.2	90.3%	87.3%	77.6%	79.6%	97.1%

Summary

- Gait representation based on optical flow computations
- Information captured in a set of motion descriptors
- Descriptors have different sensitivity to different conditions
- Fusion gives a representation that is
 - Discriminative
 - Less sensitive to covariate condition changes

