PRISM: PRincipled Implicit Shape Model

Alain Lehmann Bastian Leibe and Luc Van Gool September 9th, BMVC 2009, London

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Introduction: Object-Class Detection

Hough-Transform

Implicit Shape Model (ISM) [Leibe et al., 2008]

- + natural voting
- constrained model (negative votes impossible)
- questionable argument (marginalisation over facts)

Sliding-Window

- + clean reasoning
- + flexible model (discriminative learning)
- "unnatural" algorithm

Hough-Transform

Sliding-Window

- Implicit Shape Model (ISM) [Leibe et al., 2008]
- + natural voting
- constrained model (negative votes impossible)
- questionable argument (marginalisation over facts)

- + clean reasoning
- + flexible model (discriminative learning)
- "unnatural" algorithm

Hough-Transform

Implicit Shape Model (ISM) [Leibe et al., 2008]

- + natural voting
- constrained model (negative votes impossible)
- questionable argument (marginalisation over facts)

Sliding-Window

- + clean reasoning
- + flexible model (discriminative learning)
- "unnatural" algorithm

Hough-Transform

Sliding-Window

 Implicit Shape Model (ISM) [Leibe et al., 2008]

PRincipled Implicit Shape Model (PRISM)

+ natural voting	with	+ clean reasoning
- constrained model		+ flexible model
(negative votes impossible)		(discriminative learning)
 questionable argument (marginalisation over facts) 		– "unnatural" algorithm

PRISM: Sliding-Window View

- fix a single hypothesis \Rightarrow crop out a sub-image
- ► compute scene-independent description ⇒ object footprint
- not explicitly defined in ISM

PRISM: Feature-Object Invariants

PRISM: Footprint & Score

Footprint Function $\phi(\lambda, I)$

- sum of dirac pulses, each
- encoding one invariant $\mathbb{I}(\lambda, f)$

Linear Object Model W

- compulsory for HT
- no other assumptions

Sliding-Window \mapsto Hough-Transform

Voting Pattern $W(f_c, \mathbb{I}(\cdot, f))$

 transformation of W defined by invariants I, f ▶ no constraints on W, i.e. can be positive & negative ⇒ ICCV'09

Algorithmically

SW: for $\lambda \in \Lambda$: for $f \in \mathcal{F}$: $S(\lambda) += W(f_c, \mathbb{I}(\lambda, f))$ HT: for $f \in \mathcal{F}$: for $\lambda \in \Lambda : S(\lambda) += W(f_c, \mathbb{I}(\lambda, f))$ avoid: summing over $W(f_c, \mathbb{I}(\lambda, f)) = 0$

A Concrete Algorithm

inspired by ISM

- ▶ set $W(c, \mathbb{I}) = p_c(\mathbb{I})$
- ► Gaussian mixture models → better scaling
- EM-based learning
- gradient-based search

(recovering ISM)

(occurrence distribution) (kernel density estimators) (scale linear with training data)

(mean-shift in ISM)

What happens to a Gaussian during voting?

• object-centric invariant \Rightarrow non-linear distortion

▶ feature-centric invariant ⇒ simple translation & scaling
 ⇒ still a Gaussian ⇒ explicit voting possible
 ⇒ advantages ⇒ used in our experiments

Results on Toyota Pedestrian DB

ISM: baseline

- ► GMM
- modified GMM $\tilde{p}_c(\mathbb{I}) = \alpha_c \cdot p_c(\mathbb{I})$

 $p_{c}(\mathbb{I})$

- (solid)
- (dashed)
 - (solid)
- state-of-the-art accuracy (without ISM's MDL verification)
 new theory does not impair quality

Soft-Matching..

- ..increases detection quality, but more costly
- ► ..is not needed during detection ⇒ fast NN-matching sufficient

(4× faster than 5NN)

- \blacktriangleright soft-matching S blurs the footprint ϕ
- $\langle S\phi, W \rangle = \langle \phi, S^T W \rangle \Rightarrow$ regularisation

Conclusion

PRISM: PRincipled Implicit Shape Model

- sound justification for Hough voting
 - \Rightarrow resolve theoretical problems of ISM
- object footprint & invariants
- ► duality: Hough-transform ⇔ linear sliding-window
- ► soft-matching causes regularisation ⇒ fast NN-matching at detection time

Conclusion

PRISM: PRincipled Implicit Shape Model

- sound justification for Hough voting
 - \Rightarrow resolve theoretical problems of ISM
- object footprint & invariants
- ► duality: Hough-transform ⇔ linear sliding-window
- soft-matching causes regularisation
 ⇒ fast NN-matching at detection time

Feature-Centric Efficient Subwindow Search [ICCV'09]

- PRISM + discriminative learning + branch and bound
- advantages over ESS:
 - true-scale invariance
 - less memory usage
 - no on-line pre-processing

demo code available at www.vision.ee.ethz.ch/lehmanal/iccv09

Questions?

PRISM: Full 1D Example

