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Overview and Motivation

I Generative models of natural image structure
I Investigation of a particular class of MRFs:

Field-of-Experts (FoE; Roth & Black, 2005)
I continuous-valued, high-order MRF
I fully parametric
I all parameters can be learned from data

I Test case: Modeling image texture
I texture is an important aspect of natural

images
I images as compositions of multiple

texture regions
I suitable for understanding the

“generative power” of a probabilistic
model [www.cgtextures.com]
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Outline

I Field of Experts (FoE)
I Extended Field-of-Experts model
I Experiments: texture synthesis
I Experiments: texture inpainting
I Discussion
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The Field-of-Experts model (Roth & Black, 2005)

I Field of Experts: High order MRF with potentials defined
in terms of the responses of linear filters.

I PDF for a FoE with a single expert:

p(x) =
1
Z

N∏
i=1

Φ(wT x (i))

I clique centered at each pixel i = 1 . . .N;
I x (i): image patch centered at pixel i
I w : filter
I Φ(y): expert nonlinearity

I For multiple experts (M: # of experts):

p(x) =
1
Z

N∏
i=1

M∏
j=1

Φj(wT
j x (i))
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Field-of-Experts model (cont’d)
PDF defined by the FoE:

pFoE (x ; Θ) =
1
Z

N∏
i=1

M∏
j=1

Φ
(

wT
j x (i); θj

)
x : image; i : index pixels; j : index experts; w j : filter; Φ expert nonlinearity (potential function)

“Standard” FoE uses (simplified) Student-t
potentials:

ΦFoE (y ; v) =

(
1 +

1
2

y2
)−v
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Thus:

pFoE (x) =
1
Z

exp(−E(x))

EFoE (x) =
∑

i

∑
j

vj log
{

1 +
1
2

(
wT

j x (i)

)2
}

Note: pFoE (x) is unimodal for standard FoE model
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Extended Field-of-Experts model
“Standard” FoE uses (simplified) Student-t potentials:

ΦFoE (y ; v) =

(
1 +

1
2

y2
)−v

v > 0: expert parameter

Extended FoE with bimodal potentials (BiFoE):

ΦBiFoE (y ; a, b, v) =

{
1 +

1
2

[
(y + b)2 + a

]2
}−v

EBiFoE (x) =
∑

i

∑
j

vj log

{
1 +

1
2

[(
wT

j x (i) + bj

)2
+ aj

]2
}

v > 0: expert parameter; a: mode distance; b: center position
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Why does Φ matter?
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Why does Φ matter?

The global density defined by the standard FoE is unimodal. The BiFoE
allows for considerably more flexibility for shaping the density function.
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Setup of experiments - Data

Brodatz and synthetic textures

D6: woven aluminium wire D21: french canvas D53: oriental straw cloth D77: cotton canvas

D4: pressed cork D103: loose burlap circle textons cross textons
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Setup of experiments - Evaluation

I Tasks:
I Texture synthesis
I Texture inpainting

I Baseline Model: Gaussian FoE (GFoE)

ΦGFoE (y) = exp(−(y − b)2)

E(x) =
1
2

∑
i

∑
j

(
wT

j x (i) + bj

)2

x ∼ N(µ,Σ) and µ and Σ can be computed explicitly.

I Other details:
I Models with M = 9/15 experts, filter size 7× 7 pixels
I Training on 500 25× 25 pixels texture patches
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Learning

I Learning of the parameters by gradient ascent in the
log-likelihood:

∂

∂θj
L(X ; Θ) = −

〈
∂EFoE (x ; Θ)

∂θj

〉
X

+

〈
∂EFoE (x ; Θ)

∂θj

〉
pFoE (x ;Θ)

I Roth & Black propose contrastive divergence for learning

I insufficient in the case of the BiFoE

I Better: Approximating the model distribution using K persistent
chains (Tieleman 2008)

I Chains initialized at the beginning of learning
I Alternating update of Markov chains and model parameters
I “Persistence” seems to be essential for learning good

BiFoE models!
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Texture Synthesis

50 × 50 texture patches / samples from the models

Data

FoE

GFoE
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Texture Synthesis

50 × 50 texture patches / samples from the models
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Texture Synthesis
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Texture Synthesis

50 × 50 texture patches / samples from the models

Data

FoE

GFoE

BiFoE

All BiFoE models learn experts with bimodal nonlinearities (aj < 0)
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Texture Inpainting
Results for 70× 70 inpainting frames with 50× 50 “unobserved” regions. Missing
pixels sampled conditioned on observed pixels with HMC-MCMC.

D6 D21 D53 D77

Original

Inpainting Frame
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Texture Inpainting
Results for 70× 70 inpainting frames with 50× 50 “unobserved” regions. Missing
pixels sampled conditioned on observed pixels with HMC-MCMC.

D6 D21 D53 D77

Original

Inpainting Frame

Efros & Leung

BiFoE

Average reconstruction quality in terms of normalized cross-correlation with ground truth (± std.-dev)

D6 D21 D53 D77

Efros & Leung 0.8300 ± 0.0380 0.8330 ± 0.0351 0.8878 ± 0.0300 0.6325 ± 0.0490

BiFoE 0.8769 ± 0.0163 0.8653 ± 0.0244 0.9145 ± 0.0125 0.6567 ± 0.0205

25 / 28



Summary & Conclusions

I “Standard FoE” is a limited model of textures
I the bimodal potential gives rise to a considerably more

powerful model
I performance equivalent to non-parametric approach on

textures considered
I but description is more compact and in terms of a

generative model
I can be used as a component e.g. for a texture

segmentation task in a fully generative setting

I Results not inconsistent with the good performance of the
standard FoE for image denoising / inpainting:

I FoE trained on natural images seems to model mainly
piecewise smoothness (Weiss & Freeman, 2007; Tappen 2007)

I for simple image properties such as piecewise smoothness
a unimodal PDF is sufficient
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