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Overview and Motivation

» Generative models of natural image structure

» Investigation of a particular class of MRFs:
Field-of-Experts (FOE; Roth & Black, 2005)
» continuous-valued, high-order MRF
» fully parametric
» all parameters can be learned from data

» Test case: Modeling image texture
» texture is an important aspect of natural
images
» images as compositions of multiple
texture regions
» suitable for understanding the

“generative power” of a probabilistic
model [www.cgtextures.com]
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Field of Experts (FOE)

Extended Field-of-Experts model
Experiments: texture synthesis
Experiments: texture inpainting
Discussion
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The Field-of-Experts model (Roth & Black, 2005)

» Field of Experts: High order MRF with potentials defined
in terms of the responses of linear filters.

» PDF for a FoE with a single expert:

;N
p(x) = > [[o(w'x()

i=1

clique centered at each pixel i =1...N;
X(: image patch centered at pixel /

w: filter

®(y): expert nonlinearity

» For multiple experts (M: # of experts):

1 N M
p(x) = Z [T TT ®i(wi x@)

i=1 j=1

vV vyVvYy
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Field-of-Experts model (cont'd)
PDF defined by the FoE:

Proc(X; ©) = ZHH¢(W X(iy; 9,)

i=1 j=1

X: image; i: index pixels; j: index experts; w;: filter; ® expert nonlinearity (potential function)

“Standard” FoE uses (simplified) Student-t : oo
potentials: AZZZ —v=20
1\ o N
¢FOE(y; V) - (1 + 2y2) .95 0 5
y
Thus:

proe(x) = S exp(~E(x))
Enclx) = 33 wioa {15 (wxo)'}
i

Note: proe(X) is unimodal for standard FoE model
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Extended Field-of-Experts model

“Standard” FoE uses (simplified) Student-t potentials:

1 —V
Sre(y;v) = (1 + §y2)
v > 0: expert parameter

Extended FoE with bimodal potentials (BiFoE):

1 2, 120"
Spiroe(y;a b, v) = 1+ > [(}’ +b)” + a]

2
ZZ v,-Iog{1 +1§ |:(WJTX(,') +bj)2+aj} }
i

v > 0: expert parameter; a: mode distance; b: center position

Esiroe(X)

1 Student-t
——a=0;b=-3|
- ——a=-1,b=0|
?0_5 ——a=-4,b=4
——a=1b=4
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Why does ¢ matter?
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Why does ¢ matter?

Standard FoE

(M=1 1D experts)

potential function
of single expert

global probability
distribution defined
by multiple experts
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Why does ¢ matter?

Standard FoE

potential function
of single expert

global probability
distribution defined
by multiple experts
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X

(M=2 1D experts)
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Why does ¢ matter?

Standard FoE

potential function
of single expert

global probability
distribution defined
by multiple experts

(M=3 1D experts)
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Why does ¢ matter?

Standard FoE Bimodal FoE

potential function
of single expert

global probability
distribution defined x
by multiple experts

(M=3 1D experts) (M=2 1D experts)

The global density defined by the standard FoE is unimodal. The BiFoE
allows for considerably more flexibility for shaping the density function.
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Setup of experiments - Data

Brodatz and synthetic textures

D6: woven aluminium wire D21: french canvas D53: oriental straw cloth D77: cotton canvas

Bttt

D4: pressed cork D103: loose burlap circle textons cross textons
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Setup of experiments - Evaluation

» Tasks:

» Texture synthesis
» Texture inpainting

» Baseline Model: Gaussian FoE (GFoE)
baroe(y) = exp(—(y — b)?)
1 2
Ex) = 5323 (w/x+b)
P
x ~ N(u,X) and p and X can be computed explicitly.

» Other details:

» Models with M = 9/15 experts, filter size 7 x 7 pixels
» Training on 500 25 x 25 pixels texture patches
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» Learning of the parameters by gradient ascent in the

log-likelihood:
9 rixe) = _<3EFME(";@)> +<5E/%E(X?@)>
80j 89j X (99/' Proc(X:0)

» Roth & Black propose contrastive divergence for learning
» insufficient in the case of the BiFoE

» Better: Approximating the model distribution using K persistent
chains (tieleman 2008

» Chains initialized at the beginning of learning

» Alternating update of Markov chains and model parameters

» “Persistence” seems to be essential for learning good
BiFoE models!
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Texture Synthesis

50 x 50 texture patches / samples from the models

Data

FoE

GFoE
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Texture Synthesis
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50 x 50 texture patches / samples from the models

- 1
P-4 E
e DG SR 1
e ]
PR §
- q4 e 1
g e+ ]
--{0---+4 m 1
F- F---4 4
o]
4---F--A 2
+ o b--0--4 4

3 3 3 S

Data
FoE
GFoE

6
«ﬁm@
Qw_\“;_\A O\\@
PCY
&@%
6, %
“,
6 %,
k9
o %
A
N
o, %
vy, O
9%,
o,
Qu_w«x_w 4
6 «wc«
+ O
Aﬁ%e
q@@ o
Do,
oy, ¥
«&W
O

BiFoE

20/28



Texture Synthesis

FoE

GFoE

BiFoE
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Texture Synthesis

50 x 50 texture patches / samples from the models
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All BiFoE models learn experts with bimodal nonlinearities (a; < 0)
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Texture Inpainting

Results for 70 x 70 inpainting frames with 50 x 50 “unobserved” regions. Missing
pixels sampled conditioned on observed pixels with HMC-MCMC.

D21 D77

Original

Inpainting Frame
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Texture Inpainting

Results for 70 x 70 inpainting frames with 50 x 50 “unobserved” regions. Missing
pixels sampled conditioned on observed pixels with HMC-MCMC.

Original

Inpainting Frame

Efros & Leung
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Texture Inpainting

Results for 70 x 70 inpainting frames with 50 x 50 “unobserved” regions. Missing
pixels sampled conditioned on observed pixels with HMC-MCMC.

Original

Inpainting Frame

Efros & Leung

BiFoE

Average reconstruction quality in terms of normalized cross-correlation with ground truth (4= std.-dev)

D6 D21 D53 D77
Efros & Leung 0.8300 =+ 0.0380 0.8330 =+ 0.0351 0.8878 =+ 0.0300 0.6325 4 0.0490
BiFoE 0.8769 £ 0.0163 0.8653 + 0.0244 0.9145 £ 0.0125 0.6567 + 0.0205
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Summary & Conclusions

» “Standard FoE” is a limited model of textures

» the bimodal potential gives rise to a considerably more
powerful model

» performance equivalent to non-parametric approach on
textures considered

» but description is more compact and in terms of a
generative model

» can be used as a component e.g. for a texture
segmentation task in a fully generative setting

» Results not inconsistent with the good performance of the
standard FoE for image denoising / inpainting:
» FoE trained on natural images seems to model mainly
pieceWise sSmMoothness (weiss & Freeman, 2007; Tappen 2007)
» for simple image properties such as piecewise smoothness
a unimodal PDF is sufficient
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