Combining Appearance and Structure from Motion Features for Road Scene Understanding

Paul Sturgess, Karteek Alahari, Ľubor Ladický, Phil Torr

Oxford Brookes University

http://cms.brookes.ac.uk/research/visiongroup/

Goal: Classify ↔ Segment

- Abundance of street level imagery
- Classify every pixel in an image

The <u>Cam</u>bridge-driving Labeled <u>Vid</u>eo Database

http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/

G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object classes in video: A highdefinition ground truth database. Pattern Recognition Letters 2009.

Method

- A complementary set of features
 - Can describe a wide variety of object-classes
- Higher Order CRF
 - Produces high quality object-class boundaries
- Joint Boost for Unary Potentials
 - Single classifier for all features
- Evaluation
 - High quality annotated ground truth

Features

- Structure-from-motion
 - Moving Vs Static, 3D location cues, Texture

G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Segmentation and recognition using structure from motion point clouds. ECCV 2008.

Features

- HOG
- Colour
- Location
- Textons

- Likelihood of a pixel taking a label
- Computed via a boosting approach

Boosting for Unary Potentials

- TextonBoost
 - Context exploited
 - Boosted combination of textons
 - Response defined by the pair
 [texton *t*, rectangular region *r*].

J. Shotton, J. M. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. ECCV 2006.

Boosting for Unary Potentials

- Dense Boost
 - Response defined by the triplet

[feature type f, feature cluster t, rectangular region r] f = {SfM, HOG, Colour, Location, Texton}

L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr. Associative hierarchical crfs for object class image segmentation. ICCV 2009.

Unary Potential Result

Columns = Per-class recall, Average = Average recall, Global = Overall correctly labelled pixels

 $E(\mathbf{x}) = \sum \psi_i(x_i) + \sum \psi_i(x_i, x_j) + \sum \psi_c(\mathbf{x}_c)$ $i \in \mathscr{V}$ $(i,j) \in \mathscr{E}$ $c \in \mathscr{S}$ **Pairwise Potential** \mathcal{X}_{i}

- Contrast sensitive Potts model
- Encourages label consistency in adjacent pixels

- Contrast sensitive Potts model
- Encourages label consistency in adjacent pixels

Pairwise Potential Result

Raw

	Building	Tree	Sky	Car	Sign	Road	Pedestrian	Fence	Column	Sidewalk	Bicyclist	Average	Global
Brostow	46.2	61.9	89.7	68.6	42.9	89.5	53.6	46.6	0.7	60.5	22.5	53	69.1
Unary	61.9	67.3	91.1	71.1	58.5	92.9	49.5	37.6	25.8	77.8	24.7	59.8	76.4
+Pairwise	70.7	70.8	94.7	74.4	55.9	94.1	45.7	37.2	13	79.3	23.1	59.9	79.8

Columns = Per-class recall, Average = Average recall, Global = Overall correctly labelled pixels

 $E(\mathbf{x}) = \sum_{i \in \mathscr{V}} \psi_i(x_i) + \sum_{(i,j) \in \mathscr{E}} \psi_{ij}(x_i, x_j) + \sum_{c \in \mathscr{S}} \psi_c(\mathbf{x}_c)$ Higher Order Potential

- Potential takes the form of a robust P^N model
- Encourages label consistency within a super-pixel
- Super-pixels computed using meanshift

Pushmeet Kohli, Lubor Ladicky, Philip H.S. Torr. Robust Higher Order Potentials for Enforcing Label Consistency. IJCV 2009.

Robust P^N model

Ensures cost of breaking a good segment is higher than that of a bad segment

Robust P^N code: *http://sots.brookes.ac.uk/lubor/*

Slide adapted from P. Kohli

Segment Quality

 Label inconsistency cost depends on segment quality

$$\gamma_{\max} = |c|^{\theta_{\alpha}} (\theta_p^h + \theta_v^h G(c))$$

variance of intensities

- Low variance indicates good quality
- High variance indicates poor quality

Multiple Segmentations

• Single Segmentation?

Combine multiple segmentations

HO Potential Result

Unary +Pairwise +Higher Order

Ground

Raw

Road	Building	Sky	Tree	Sidewalk	Car
Void	Column	Sign	Fence	Pedestrian	Cyclist

	Building	Tree	Sky	Car	Sign	Road	Pedestrian	Fence	Column	Sidewalk	Bicyclist	Average	Global
Brostow	46.2	61.9	89.7	68.6	42.9	89.5	53.6	46.6	0.7	60.5	22.5	53	69.1
Unary	61.9	67.3	91.1	71.1	58.5	92.9	49.5	37.6	25.8	77.8	24.7	59.8	76.4
+Pairwise	70.7	70.8	94.7	74.4	55.9	94.1	45.7	37.2	13	79.3	23.1	59.9	79.8
+HO	84.5	72.6	97.5	72.7	34.1	95.3	34.2	45.7	8.1	77.6	28.5	59.2	83.8

Columns = Per-class recall, Average = Average recall, Global = Overall correctly labelled pixels

Brostow et al **ECCV 08** Unary +Pairwise +HO Ground Truth

Raw

Road	Building	Sky	Tree	Sidewalk	Car
Void	Column	Sign	Fence	Pedestrian	Cyclist

Brostow et al ECCV 08 Unary +Pairwise +HO Ground Truth Raw Road Building Tree Sidewalk Car Sk Void Fence Pedestrian **Cyclist** Brostow et al ECCV 08 Unary +Pairwise +HO Ground Truth Raw

Road	Building	Sky	Tree	Sidewalk	Car
Void	Golumn	Sign	Fence	Pedestrian	Cyclist

HO Problems

Raw

Higher Order

Ground

Evaluation Summary

	Building	Tree	Sky	Car	Sign-Symbol	Road	Pedestrian	Fence	Column-Pole	Sidewalk	Bicyclist	Average	Global
Mot. [8]	43.9	46.2	79.5	44.6	19.5	82.5	24.4	58.8	0.1	61.8	18.0	43.6	61.8
App. [<mark>8</mark>]	38.7	60.7	90.1	71.1	51.4	88.6	54.6	40.1	1.1	55.5	23.6	52.3	66.5
Combined [8]	46.2	61.9	89.7	68.6	42.9	89.5	53.6	46.6	0.7	60.5	22.5	53.0	69.1
ψ_i	61.9	67.3	91.1	71.1	58.5	92.9	49.5	37.6	25.8	77.8	24.7	59.8	76.4
$oldsymbol{\psi}_i + oldsymbol{\psi}_{ij}$	70.7	70.8	94.7	74.4	55.9	94.1	45.7	37.2	13.0	79.3	23.1	59.9	79.8
$\psi_i + \psi_{ij} + \psi_c$	84.5	72.6	97.5	72.7	34.1	95.3	34.2	45.7	8.1	77.6	28.5	59.2	83.8

Columns = Per-class recall, Average = Average recall, Global = Overall correctly labelled pixels

- Improvement in 9 out of 11 classes
- Pairwise terms improve most classes
- Higher order terms further improve most classes

Evaluation Summary

	Building	Tree	Sky	Car	Sign-Symbol	Road	Pedestrian	Fence	Column-Pole	Sidewalk	Bicyclist	Average	Global
Mot. [<mark>8</mark>]	43.9	46.2	79.5	44.6	19.5	82.5	24.4	58.8	0.1	61.8	18.0	43.6	61.8
App. [<mark>8</mark>]	38.7	60.7	90.1	71.1	51.4	88.6	54.6	40.1	1.1	55.5	23.6	52.3	66.5
Combined [8]	46.2	61.9	89.7	68.6	42.9	89.5	53.6	46.6	0.7	60.5	22.5	53.0	69.1
ψ_i	61.9	67.3	91.1	71.1	58.5	92.9	49.5	37.6	25.8	77.8	24.7	59.8	76.4
$\psi_i + \psi_{ij}$	70.7	70.8	94.7	74.4	55.9	94.1	45.7	37.2	13.0	79.3	23.1	59.9	79.8
$\psi_i + \psi_{ij} + \psi_c$	84.5	72.6	97.5	72.7	34.1	95.3	34.2	45.7	8.1	77.6	28.5	59.2	83.8

Columns = Per-class recall, Average = Average recall, Global = Overall correctly labelled pixels

- Improvement in 9 out of 11 classes
- Pairwise terms improve most classes
- Higher order terms further improve most classes
- Brostow et al ECCV08 better for 2 classes

Discussion: data

Recall Vs percent of class pixels in training data

- Column/pole=2,536,704 << building =57,583,181
- Poorer on all classes bellow 2% training pixels

Discussion: HO Problems

	Building	Tree	Sky	Car	Sign-Symbol	Road	Pedestrian	Fence	Column-Pole	Sidewalk	Bicyclist	Average	Global
ψ_i	61.9	67.3	91.1	71.1	58.5	92.9	49.5	37.6	25.8	77.8	24.7	59.8	76.4
$\psi_i + \psi_{ij}$	70.7	70.8	94.7	74.4	55.9	94.1	45.7	37.2	13.0	79.3	23.1	59.9	79.8
$\psi_i + \psi_{ij} + \psi_c$	84.5	72.6	97.5	72.7	34.1	95.3	34.2	45.7	8.1	77.6	28.5	59.2	83.8

Oxford Brookes

Vision Group

Columns = Per-class recall, Average = Average recall, Global = Overall correctly labelled pixels

• Decrease doesn't match with qualitative results

Discussion : Error

• Favours over estimates

Discussion : Error

- Allows for an independent per-class error measurement
- Penalises both over- and under-estimates

Slide adapted from

Discussion : Error

• Intersection/union table

	Building	Tree	Sky	Car	Sign-Symbol	Road	Pedestrian	Fence	Column-Pole	Sidewalk	Bicyclist	Average
ψ_i	55.3	54.3	84.8	51.8	11.9	85.5	15.6	27.4	7.5	60.0	15.7	42.71
$\psi_i + \psi_{ij}$	63.6	58.0	87.8	55.9	13.6	86.4	16.9	27.6	6.1	61.9	18.1	45.07
$\psi_i + \psi_{ij} + \psi_c$	71.6	60.4	89.5	58.3	19.4	86.6	26.1	35.0	7.2	63.8	22.6	49.15

Higher Order terms improve performance in all classes

Conclusion

- Strong unary potential from boosting
- HO terms yield more precise boundaries
- Improvement in 9 out of 11 classes
- Intersection/union error more informative
- Directions
 - Balance training data
 - Potentials for thin structures
 - Use Associative hierarchical CRFs

L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr. Associative hierarchical crfs for object class image segmentation. ICCV 2009.

Questions

Road	Building	Sky	Tree	Sidewalk	Car
Void	Column	Sign	Fence	Pedestrian	Cyclist